Mystics & Statistics

A blog on quantitative historical analysis hosted by The Dupuy Institute

TDI Friday Read: Engaging The Phalanx

The December 2018 issue of Phalanx, a periodical journal published by The Military Operations Research Society (MORS), contains an article by Jonathan K. Alt, Christopher Morey, and Larry Larimer, entitled “Perspectives on Combat Modeling.” (the article is paywalled, but limited public access is available via JSTOR).

Their article was written partly as a critical rebuttal to a TDI blog post originally published in April 2017, which discussed an issue of which the combat modeling and simulation community has long been aware but slow to address, known as the “Base of Sand” problem.

Wargaming Multi-Domain Battle: The Base Of Sand Problem

In short, because so little is empirically known about the real-world structures of combat processes and the interactions of these processes, modelers have been forced to rely on the judgement of subject matter experts (SMEs) to fill in the blanks. No one really knows if the blend of empirical data and SME judgement accurately represents combat because the modeling community has been reluctant to test its models against data on real world experience, a process known as validation.

TDI President Chris Lawrence subsequently published a series of blog posts responding to the specific comments and criticisms leveled by Alt, Morey, and Larimer.

How are combat models and simulations tested to see if they portray real-world combat accurately? Are they actually tested?

Engaging the Phalanx

How can we know if combat simulations adhere to strict standards established by the DoD regarding validation? Perhaps the validation reports can be released for peer review.

Validation

Some claim that models of complex combat behavior cannot really be tested against real-world operational experience, but this has already been done. Several times.

Validating Attrition

If only the “physics-based aspects” of combat models are empirically tested, do those models reliably represent real-world combat with humans or only the interactions of weapons systems?

Physics-based Aspects of Combat

Is real-world historical operational combat experience useful only for demonstrating the capabilities of combat models, or is it something the models should be able to reliably replicate?

Historical Demonstrations?

If a Subject Matter Expert (SME) can be substituted for a proper combat model validation effort, then could not a SME simply be substituted for the model? Should not all models be considered expert judgement quantified?

SMEs

What should be done about the “Base of Sand” problem? Here are some suggestions.

Engaging the Phalanx (part 7 of 7)

Persuading the military operations research community of the importance of research on real-world combat experience in modeling has been an uphill battle with a long history.

Diddlysquat

And the debate continues…

The Japanese Aerospace Industry

A schematic rendering of Japan’s proposed F-3 fighter [Tokyoexpress.info]

In my previous post, I discussed the progression of aircraft in use by the Japanese Air Self Defense Force (JASDF) since World War II. Japan has also invested significant sums in its domestic aerospace manufacturing capability over this same time period.

Japanese aircraft manufacturing has long been closely tied to the U.S Air Force (USAF) and U.S. aerospace majors offering aircraft for sales, as well as licensed production. Japanese aerospace trade groups categorize this into several distinct phases, including:

  • Restarting the aircraft business – starting in 1952 during the Korean War, Japanese aerospace firms like Mitsubishi and Kawasaki reacquired aircraft manufacturing capability by securing contacts with the USAF for maintenance, repair and overhaul (MRO) of damaged USAF aircraft, including the F-86 Sabre, considered by the Americans to be the star aircraft of the war (although many believe its opponent from the Soviet side, the MiG-15 to have been superior.) There was little doubt, then, that the JASDF would purchase the F-86 and then license its domestic production.
  • Licensed production of US military aircraft – “Japan has engaged in licensed production of U.S. state-of-the-art fighter planes, from the F-86 to the F-104, the F-4, and the F-15. Through these projects, the Japanese aircraft industry revived the technical capabilities necessary to domestically manufacture entire aircraft.”
  • Domestic military aircraft production – Japanese designed aircraft, while independent, unique designs, also leveraged certain Western designed aircraft as their inspiration, such as the T-1 and eventual F-1 follow-on and the clear resemblance to the British Jaguar. This pattern was repeated in 1987 with the F-2 and its clear design basis on the F-16.
  • Domestic Production of business, and civil aircraft – “Japan domestically produces the YS-11 passenger plane as well as the FA-200, MU-2, FA-300, MU-300, BK-117, and other commercial aircraft, and is an active participant in international joint development programs with partners such as the American passenger aircraft manufacturer Boeing.”

Mitsubishi Heavy Industries (MHI) won a contract to build the wing for the Boeing 787, a job that Boeing now considers a core competency, and is unlikely to outsource again (they kept this task in house for the more recent 737 MAX, and 777X aircraft). This shows MHI’s depth of capability.

Also in the previous post, I could not help but include the “F-22J,” a hypothetical fighter that has been requested by the Japanese government numerous times, as the air power threat from the Chinese People’s Liberation Army Air Force (PLAAF) has grown. The export of the F-22, however, was outlawed by the Obey amendment to the 1998 Defense Authorization Act (a useful summary of this debate is here). So stymied, the JASDF and supporting Ministry of Defense personnel conducted a series of design studies in order to establish detailed requirements. These studies clarified the approach to be taken for the next aircraft to put into service, the F-3 program, ostensibly a successor to the F-2, although the role to be played is more of an air superiority or air dominance fighter, rather than a strike fighter. These studies concluded that range, or endurance is the most important metric for survivability, a very interesting result indeed.

Airframe developers…appear to have settled on something close to the 2013 configuration for the F-3 that emphasized endurance and weapons load over flight performance… That design, 25DMU, described a heavy fighter with a belly weapons bay for six ramjet missiles about the size of the MBDA Meteor. The wing was large and slender by fighter standards, offering high fuel volume and low drag due to lift but penalizing acceleration.… The key factor was that the high-endurance design provided more aircraft on station than would be available from an alternative fleet of high-performance fighters. – (Aviation Week & Space Technology, February 15-28, 2016)

I am curious about the air combat models that reached the conclusion that endurance is the key metric for a new fighter. Similar USAF combat models indicated that in a conflict with PLA armed forces, the USAF would be pushed back to their bases in Japan after the first few days. “In any air war we do great in the first couple of days. Then we have to move everything back to Japan, and we can’t generate sufficient sorties from that point for deep strike on the mainland,” according to Christopher Johnson, former CIA senior China analyst [“The rivals,” The Economist, 20 October 2018]. (History reminds us of aircraft designed for range and maneuverability, the Mitsubishi A6M “Zero,” which also de-emphasized durability, such as pilot armor or self-sealing fuel tanks … was this the best choice?) Validation of combat models with historical combat data seems like an excellent choice if you are investing trillions of Yen, putting the lives of your military pilots on the line, and investing in a platform that will be in service for decades.

Given this expected cost, Japan faces a choice to develop the F-3 independently, or with foreign partners. Mitsubishi built and flew the X-2 “Shinshin” prototype in April 2016. The JASDF also issued an RFP to existing aircraft manufacturers, including the BAE Eurofighter Typhoon, the Boeing F-15 Eagle, and the Lockheed Martin F-22 Raptor. In October 2018, the Typhoon and the Eagle were rejected for not meeting the requirements, while the Raptor was rejected because “no clear explanation was given about the possibility of the U.S. government lifting the export ban.” The prospect of funding the entire cost of the F-3 fighter by independently developing the X-2 also does not appear acceptable, so Japan will look for a foreign partner for co-development. There is no shortage of options, from the British, the Franco-Germans, or multiple options with the Americans.

Evolution of the Roles and Missions of the Japanese Air Self Defense Force (JASDF)

[Sources: IHS Jane’s All the World’s Fighting Aircraft, Wikipedia, militarymachine.com, author’s estimates}

In my previous posts, I explored impact the political aftermath of the Pacific War on Japan and the gradual restoration of sovereignty had on its air power policy. During this time, aircraft and air defense technology changed rapidly and the roles and mission of the Japanese Air Self Defense Force (JASDF) evolved rapidly as well.

The JASDF has been closely tied to the U.S. Air Force (USAF) since its inception. This was true in terms of missions, doctrine, technology and equipment. The primary role of the JASDF has been air defense and the protection of Japanese sovereignty (Defensive Counter Air, DCA), since 1958 when this mission was transitioned back from the USAF. The 1978 National Defense Program Guidelines (NDPG) mandated this, and also prohibited mid-air refueling and precision-strike munitions. These missions were gradually permitted as the threat environment evolved. (See this thesis for a good summary.)

The role of offensive air power (i.e. Offensive Counter Air or OCA; attacking enemy airbases, missile launch sites and similar military facilities) has traditionally been reserved for the USAF due to legal limits on the possible missions by the JASDF. Specifically the U.S. Armed Forces, Japan, 5th Air Force is a considerable force, including the 18th Wing at Kadena, Okinawa with four squadrons of F-15s, and the 35th Wing at Misawa in Northern Japan with four squadrons of F-16s, among other support squadrons to tankers, AWACs, etc.

This posture and division of responsibilities between the JSADF and USAF has gradually changed over time, or “emerging as it really is”:

  • In the early 1980’s, the F-1 attack aircraft had a strike capability against shipping with the ASM-1 and ASM-2 missiles.
  • In the late 1990’s, the F-4EJ upgraded “Kai” version added ground attack and the ability to strike with the ASM-1 and ASM-2 missiles.
  • In the early 2000’s, the F-2 aircraft was introduced, with ground attack with precision-guided munitions and the ability to strike with the ASM-2.
  • Currently, as the F-35A is adopted, it will have state-of-the-art precision strike capabilities, and likely use the Joint Strike Missile (JSM).

Nonetheless, the primary mission of the JASDF remains air superiority and interception. The data visualization above illustrates the different types of air superiority aircraft in service with the JASDF over time. This chart is based on six quantitative measures of analysis, and has a moderate level of information density:

  1. Service Year – on the horizontal axis; when was this type introduced into service by the JASDF? This is often significantly after the similar type was introduced into service with the USAF. In some cases, this is an estimate, or in the case of the hypothetical “F-22J”, alternative history (aka wild speculation).
  2. Aircraft Type – each bubble represents an aircraft type.
  3. Range SMI (statute miles) – the color of the bubble, with darker being longer range; this is a the combat range of the aircraft type, often with optional drop tanks.
  4. Max Speed MPH (statute miles per hour) – the size of the bubble represents the maximum speed of the aircraft, measured from a base of 100 MPH. This is typically at high altitude.
  5. Rate of Climb FPM (feet per minute) – this is the ability of the aircraft to climb to altitude, and a key metric for an interceptor with a mission to rise to bombers which have violated the airspace of a nation.
  6. Thrust to Weight Ratio – this measures the ability to propel the aircraft compared with the loaded weight of the aircraft. This is often used to express the capability to climb, for when an aircraft has a high angle of attack, thrust becomes lift, so when an aircraft has more lift than weight, it can climb, and even accelerate while moving straight up.
  7. Wing Loading LBS/SquareFoot – this measures the size of the wing (and thus by proxy the lift generation capability) as compared to the weight of the aircraft, it is typically used to indicate the ability to turn quickly (i.e. change in degrees per second).

A few insights become clear when visualizing the data in this way. First, the F-104J in the role of interceptor was a huge leap in capability over the F-86 Sabre types. In many ways the F-104J set the standard to which later aircraft would match. Next, the linear progression between 1960 and 1980 of aircraft performance capability reached an apex with the F-15J, with a period of upgrades reflected in the “Kai” versions. Also, with some knowledge of these airframes, it can be seen that the Japanese market for military aircraft has been dominated by the Americans as opposed to the Europeans (or Russians). There are many aspects of these aircraft which are not captured in this chart, including weaponry, sensors, and stealth. I have discussed the relevance of these metrics in previous blog posts.

Today, the JSDF operates a wide range of aircraft, specialized in missions ranging across the spectrum of domains, with modern air force capabilities. A list of aircraft currently operated by force, and with numbers is presented in the annex, based upon the most current authoritative sources, but also updated for recent decisions by the Japanese government on procurement.

An “F-22J” is included as an “alternative history” in the chart above since the Japanese government has repeatedly sought to purchase this aircraft from Lockheed Martin for the JASDF. They have been stymied by the Obey amendment to the 1998 Defense Appropriations Act, which specifically forbade the export of the F-22 in order to protect the secrecy of its advanced technology.

Dupuy’s Verities: The Advantage Of The Offensive

Union assault on the “Mule Shoe” salient, 12 May 1864, by Thure de Thulstrup (1887) [Wikimedia]

The seventh of Trevor Dupuy’s Timeless Verities of Combat is:

An attacker willing to pay the price can always penetrate the strongest defenses.

From Understanding War (1987):

No matter how alert the defender, no matter how skillful his dispositions to avoid or mitigate the effects of surprise or the effects of flank or rear attack, a skillful attacker can always achieve at least a temporary advantage for some time at a place he has selected. This is one reason why Napoleon always endeavored to seize and retain the initiative. In the great battles of 1864 and 1865 in Virginia, Lee was always able to exploit his defensive advantage to the utmost. But Grant equally was always able to achieve a temporary superiority when and where he wished. This did not always result in a Union victory—given Lee’s defensive skill—but invariably it forced Lee to retreat until he could again impose a temporary stalemate with the assistance of powerful field fortifications. A modern example can be found in the Soviet offensive relieving Leningrad in 1943. Another was the Allied break-out from the Normandy beachhead in July and August of 1944.

The exact meaning of this verity is tricky to determine, as the phrase “willing to pay the price” does a lot of work here. History is certainly replete with examples of Phyrric victories, where the cost paid for battlefield success deprived the attacker of any clear benefit. (The U.S. Civil War Battle of Chickamauga in 1863 would be an example in line with Dupuy’s description above.) Perhaps “willing and able to pay the price” would have been a better of way stating this. And, of course, no attack is guaranteed to succeed.

What Dupuy had in mind here is probably best understood in the context of two other of his verities “Offensive action is essential to positive combat results” and “Initiative permits application of preponderant combat power.” Even if the defensive may be the stronger form of combat, the offensive affords certain inherent potential advantages that can enable attackers to defeat the strongest of defenses if conducted effectively, sufficiently resourced, and determinedly pressed.

Japan’s Grand Strategy And The Japanese Air Self Defense Force (JASDF) (III)

[Nippon.com]

Modern air forces require significant capital investments (surpassed only by naval capital investment requirements) and also require significant technological capability. Both of these aspects of modern military power require a strong economic foundation for support. Japan has a long history of investing in its own military industrial capability.

During the Meiji era (1868 to 1912), Japan economic doctrine was summed up in a motto: fukoku kyōhei, meaning “Enrich the Country, Strengthen the Armed Forces.” This phrase actually comes from an ancient Chinese book named Zhan Guo Ce (“Strategies of the Warring States”), from the 5th – 3rd century B.C. period of the same name in Chinese history. This is an excellent example of how for both Japan and China reference their own historical experiences to inform current decision-making.

The post-World War II Japanese body politic had lived through the devastation of war and became focused on economic recovery. The original motto was thus shortened to eliminate kyōhei (“strong army”), leaving only fukoku (“enrich the country”). The resulting single-minded focus paid dividends as the Japanese “economic miracle” enabled it to become the first Asian nation to “catch” the West (see image above). This policy is sometimes referred to as the “Yoshida Doctrine.” Coined in 1977 by Masashi Nishihara and summarized by Professor Sugita of Osaka University, the main elements of the doctrine are:

  1. Japan ensures its national security through an alliance with the United States;
  2. Japan maintains a low capacity for self-defense;
  3. Japan spends resources conserved by the first and second policies on economic activities to develop the country as a trading nation.

In December 2012, Prime Minister Shinzo Abe announced “Abenomics”, a multi-faceted approach to revive Japan’s sluggish economy and to restore Japan’s geopolitical influence as a counterbalance to China’s rise. Abe and his Liberal Democratic Party (LDP) have re-invoked the term fukoku kyōhei, acknowledging that a strong economy and a strong military will be needed in this endeavor.

Japan’s Grand Strategy And The Japanese Air Self Defense Force (JASDF) (II)

Hypothetical occupation zones for post-war Japan had the Allies decided to divide the country. [Pinterest]

In previous posts, I have explored the political and strategic context for the role of the Japan Maritime Self Defense Force (JMSDF). Now I will look at the political reasons why the Japanese Air Self Defense Force (JASDF) is restricted in its operating concepts and capabilities.

After the Pacific War (which for Japan lasted from 1931 to 1945), the devastation of the war and backlash against militarism became conventional wisdom among Japanese. At the Moscow Conference of December 1945, the Allies agreed that since Japan had fallen to the United States, that country would be allowed to conduct the post-war occupation. (Hungary had fallen to the Red Army and thus was occupied by the Soviet Union alone.) This decision saved Japan from a division like Germany or Korea, although the Soviets still had plans for a Japanese communist state (see below). The map above is a hypothetical division of Japan, developed by a wargamer.

The greater Japanese empire, however was divided among the Allies, with many natural choices, such as the former British colonial possessions being returned (e.g. Singapore, Hong Kong, etc.), former French colonial possessions being returned (Indochina), South Sakhalin and the Kuril Islands going to the Soviets, and Taiwan and the Pescadores returning to China (although which China became a key question in 1949). Notably, Korea was divided into North and South, with the Soviets in control of the former, and the other Allies (primarily the US and UK) managing the later.

In Japan, the Supreme Commander for the Allied Powers (SCAP), General Douglas MacArthur governed and imposed a new post-war constitution, which came into force in May 1947, and is technically an amendment to the original Meiji-era constitution of 1889. Article 9 of which reads as below:

(1) Aspiring sincerely to an international peace based on justice and order, the Japanese people forever renounce war as a sovereign right of the nation and the threat or use of force as means of settling international disputes.

(2) In order to accomplish the aim of the preceding paragraph, land, sea, and air forces, as well as other war potential, will never be maintained. The right of belligerency of the state will not be recognized.

As early as 1946, however, planners in the the Joint Staff, under the U.S. Joint Chiefs of Staff (JCS), began to consider the re-armament of Japan, anticipating a Soviet attack against Japan. The actual Soviet war plan to attack Hokkaido on August 24th 1945 was published by the Wilson center in 2015, and some say that strategic nuclear deterrence was what saved Japan from the same fate as divided Germany.

In March 1948, when Washington considered starting peace treaty negotiations with Japan, Under Secretary of the Army William Draper stated that the War Department was generally in favor of Japanese rearmament. In response to an inquiry by the secretary of defense, the JCS stated: ‘Solely from the military viewpoint, the establishment of Japanese armed forces is desirable’ to offset ‘our own limited manpower.’

The American vision of an unarmed and pacifist Japan, as rapidly enshrined in the constitution, was nearly dead on arrival, as international events unfolded rapidly in the late 1940’s and early 1950’s:

  • 1947, March – President Harry Truman addressed Congress and the U.S. public, announcing the policy of containment, and establishing the Truman Doctrine.
  • June 1948 – the Soviet Union blockaded Berlin, resulting in the famous airlift.
  • October 1949 – Chiang Kai-shek and the Republic of China were defeated by Mao Zedong and the Chinese Red Army, founding the People’s Republic of China (PRC).
  • June 1950 – North Korea, a Soviet satellite state since 1945, invaded South Korea, fracturing the post-war territorial division.

Thus, by 1950 when John Foster Dulles was appointed to begin negotiating a peace treaty with Japan to conclude the American occupation, he and most other American policy makers had come to see Japan as very important to the defense of American interests and democracy in the Far East.

  • September 1951 – The Treaty of San Francisco was signed, establishing peace between Japan and many Allied nations, but notably not the Soviet Union, China as Republic of China (Taiwan), or People’s Republic of China (mainland), or North nor South Korea.
  • September 1951 – The U.S.-Japan Security Treaty was signed on the same date, but entered into force in April 1952. This ended the military occupation, restored sovereignty to the Japanese government, but also clarified the ongoing US military presence in Japan, originally the Far East Command (FEC) from 1947 until 1957 when the United States Forces Japan (USFJ).
  • March 1954 – The original Treaty of Mutual Cooperation and Security between the United States and Japan, “contained provisions that permitted the United States to act for the sake of maintaining peace in East Asia and even exert its power on Japanese domestic quarrels.” (Wikipedia)
  • October 1956 – The Soviet Union and Japan signed the Joint Declaration, a bi-lateral agreement short of a peace treaty. This normalized relations between the countries since the Soviet Union did not sign the 1951 Treaty of San Francisco. This agreement breaks news today, as Japan and Russia are currently moving towards a peace treaty.
  • 1958 – The U.S. Air Force (USAF) handed over airspace responsibility to JASDF. Threats to Japanese airspace were dealt with in the same way that they were in the U.S. prior to the Semi-Automatic Ground Environment (SAGE) system, much like they were by the British in 1940 (see Dowding System), by manual means. It would be more than a decade until Japan had its own version of SAGE, known as Base Air Defense Ground Environment (BADGE) in English, and 自動警戒管制組織 (jidou keikai kansei soshiki) ”Automatic Warning and Control Organization” in Japanese. [More on this in a future post.]
  • January 1960 – Two key documents were updated, the Treaty of Mutual Cooperation and Security, and the U.S.-Japan Status of Forces Agreement. To alleviate the unequal status, removed the provision to intervene in Japanese domestic quarrels, included articles to delineate mutual defense obligations, and U.S. obligations to pre-inform Japan in times of the U.S. military mobilization. The ratification of this treaty was greeted with widespread protests by the Japanese public, who opposed nuclear weapons in Japan, and were concerned about being on the front line in a possible nuclear exchange between the US and the Soviet Union.

Japan’s Grand Strategy And The Japanese Air Self Defense Force (JASDF) (I)

Japanese Air Self Defense Force (JASDF) F-15 at Chitose Air Base, Japan in 2014. [Suga/Wikimedia]

In the previous post on Japan’s grand strategy, I observed its focus on the maritime domain and connectivity with the Indian Ocean. Much seaborne trade flows through this region, especially oil supplies for industrialized countries in East Asia, including Japan and China. These sea lines of communication (SLOC) extend far beyond Japan’s sovereign territory.

I also noted that the Japanese home islands required attention as well, as challenges to airspace sovereignty are ever present, even as they ebb and flow with the geopolitical situation of the times (see statistics through 2017).

To the student of military might, it may seem strange for a nation to project power in the maritime domain but to have a more reserved attitude towards projecting power in the air domain. After all, it has been well demonstrated and accepted that air power can be highly effective in the maritime domain, as evidenced by:

The Royal Navy launched the first all-aircraft ship-to-ship naval attack in history, employing 21 obsolete Fairey Swordfish biplane torpedo bombers from the aircraft carrier HMS Illustrious in the Mediterranean Sea. The attack struck the battle fleet of the Regia Marina at anchor in the harbor of Taranto. “Taranto, and the night of 11–12 November 1940, should be remembered for ever as having shown once and for all that in the Fleet Air Arm the Navy has its most devastating weapon.” Admiral Andrew Cunningham, British Royal Navy

The infamous attack on the U.S. Navy Pacific Fleet at anchor on 7 December 1941 involved the notable use of naval aviation by the Imperial Japanese Navy’s 1st Air Fleet (Kidō Butai), “[A] revolutionary and potentially formidable instrument of sea power.”  Gordon Prange.

The Royal Navy battleship HMS Prince of Wales and battlecruiser HMS Repulse were sunk by land-based bombers and torpedo bombers of the Imperial Japanese Navy off the coast of Malaya on 10 December 1941.

This ability to rapidly project power over great distances from the air contributed to the general state of surprise that the Allies found themselves (summed up nicely here):

The technological superiority of Japanese aviation, the bombing of Pearl Harbor, the sinking of HMS Prince of Wales and Repulse, and Japan’s rapid advance and dominance of the air shocked everyone. Japan was not only technologically superior in the air, its ability to support, replace, and move air assets was far superior to the Americans and the British. General Percival, the British commander in Malaya, was surprised that the Japanese were able to bomb Singapore in the first days of the war despite the fact that their nearest airbase was seven hundred miles away. He would soon profess his amazement at the performance of Japanese aircraft and their ability to launch coordinated attacks on targets all over Malaya.

Even after aerial defeats at Midway, the Marianas, and after the devastating strategic bombing campaign by the U..S Army Air Forces (USAAF), the Japanese were able to field effective air units, such as the 343rd Kōkūtai (Naval Air Group), with veteran pilots, led by experienced commanders such as Minoru Genda (more about him later), using excellent fighter aircraft; the N1K-J Shiden Kai / “George”. In these limited situations, the balance of aerial combat was not so lopsided as the headline numbers suggest (here is an excellent thesis on the complexity in these ratios). These air defense efforts, however, where too little, too late for the Japanese, but they illustrate capabilities which would re-emerge after the war, and especially in military alliance and rearmament with the US.

So, after having innovated the use of air power in the 1930’s and clearly demonstrating this to the world in the 1940’s, why is today’s JASDF relatively circumspect, especially relative to the Japanese Maritime Self-Defense Force (JMSDF), as Japan gradually moves into a more assertive foreign policy (as discussed previously)?

Some Useful Resources for Post-World War II U.S. Army Doctrine Development

This list originated in response to a Twitter query discussing the history of post-World War II U.S. Army doctrine development. It is hardly exhaustive but it does include titles and resources that may not be widely known.

The first two are books:

Benjamin Jensen, Forging the Sword: Doctrinal Change in the U.S. Army (Stanford University Press, 2016)

Jensen focused on the institutional processes shaping the Army’s continual post-war World War II efforts to reform its doctrine in response to changes in the character of modern warfare.

Shimon Naveh, In Pursuit of Military Excellence: The Evolution of Operational Theory (Routledge, 1997)

In an excellent overview of the evolution of operational thought through the 20th century, Naveh devoted two chapters to the Army’s transition to Active Defense in the 70s and then to AirLand Battle in the 80s.

There are several interesting monographs that are available online:

Andrew J. Bacevich, The Pentomic Era: The U.S. Army Between Korea and Vietnam (NDU Press, 1986)

Paul Herbert, Deciding What Has to Be Done: General William E. DePuy and the 1976 Edition of FM 100-5, Operations (Combat Studies Institute, 1988)

John Romjue, From Active Defense to AirLand Battle: the Development of Army Doctrine 1973-1982 (TRADOC, 1984)

John Romjue, The Army of Excellence: The Development of the 1980s Army (TRADOC, 1997)

John Romjue, American Army Doctrine for the Post-Cold War (TRADOC, 1997)

A really useful place to browse is the Army Command and General Staff College’s online Skelton Combined Arms Research Library (CARL). It is loaded with old manuals and student papers and theses addressing a wide variety of topics related to the nuts and bolts of doctrine.

Another good place to browse is the Defense Technical Information Center (DTIC), which is a huge digital library of government sponsored research. I recommend searches on publications by the Army’s defunct operations research organizations: Operations Research Office (ORO), Research Analysis Corporation (RAC), and the Special Operations Research Office (SORO). The Combat Operations Research Group (CORG), particularly a series of studies of Army force structure from squads to theater HQ’s by Virgil Ney. There is much more to find in DTIC.

Two other excellent places to browse for material on doctrine are the Combat Studies Institute Press publications on CARL and the U.S. Army Center of Military History’s publications.

Some journals with useful research include the Journal of Cold War Studies and the Journal of Strategic Studies.

If anyone else has suggestions, let me know.

Diddlysquat

This blog post is generated as a response to one of Richard Anderson’s comments to this blog post:

Validating Attrition

Richard Anderson used to work with me at Trevor Dupuy’s company DMSI and later at The Dupuy Institute. He has been involved in this business since 1987, although he has been away from it for over a decade.

His comment was: “Keep fighting the good fight Chris, but it remains an uphill battle.”

It is an uphill battle. For a brief moment, from 1986-1989 it appeared that the community was actually trying to move forward on the model validation and “base of sand” type issues. This is discussed to some extent in Chapter 18 of War by Numbers (pages 295-298).

In 1986 the office of the DUSA (OR) * reviewed the U.S. Army Concepts Analysis Agency’s (CAA) casualty estimation process in their models. This generated considerable comments and criticism of how it was being done. In 1987 CAA, with I gather funding from DUSA (OR), issued out the contract to develop the Ardennes Campaign Simulation Data Base (ACSDB). I was the program manager for that effort. That same year they issued out the contract to study Breakpoints (forced changes in posture) which I was also involved in.

So we had the army conducting an internal review of their models and finding them wanting. They then issued out a contract to validate them and they issued out a contract to examine the issue of breakpoints, which had not been seriously studied since the 1950s. This was at the initiative of Vandiver and Walt Hollis.

After that, everything kind of fell apart. The U.S. defense budget peaked in 1989 and the budget cuts started. So, even though the breakpoints study got a good start, there was no follow-on contract. The ACSDB ended up being used for a casual top-level validation effort that did not get into the nuts and bolts of the models. All the dozens of problems identified in the internal DUSA(OR) report resulted in no corrective action taken (as far as I know). Basically, budget was declining and maintaining hardware was more important that studies and analysis.

There was a resurgence of activity in the early 1990s, which is when the Kursk Data Base (KDB) was funded. But that was never even used for a validation effort (although it was used to test Lanchester). But funding was marginal during most of the 1990s, and the modeling community did little to improve their understanding and analysis of combat.

The nature of the missions changed after 9/11/2001 and The Dupuy Institute ended up focused on insurgencies (see America’s Modern Wars). Budget again started declining in 2009 and then sequestration arrived, killing everything.

The end result was that there was a period from 1986-1989 when the U.S. modeling community appeared to have identified their problems and were taking corrective action. Since 1989, for all practical purposes, diddlysquat.

So…..30 years later…..I am still fighting the “good fight.” But I am not optimistic. Nothing is going to happen unless people at senior levels fund something to happen. For the price of a Stryker or two, a huge amount of productive and useful work could be done. But to date, having an extra Stryker or two has been more important to the army.

For this year and next year the U.S. Army has increasing budgets. If they wanted to take corrective action….now would be the time. I suspect that bureaucratic inertia will have more weight than any intellectual arguments that I can make. Still, I have to give it one last try.

 

* DUSA (OR) = The Deputy Under Secretary of the Army (Operations Research). It was headed by Walt Hollis forever, but was completely shut down in recent times.

Paul Davis (RAND) on Bugaboos

Just scanning the MORS Wargaming Special Meeting, October 2016, Final Report, January 31, 2017. The link to the 95-page report is here:

http://www.mors.org/Portals/23/Docs/Events/2016/Wargaming/MORS%20Wargaming%20Workshop%20Report.pdf?ver=2017-03-01-151418-980

There are a few comments from Dr. Paul Davis (RAND) starting on page 13 that are worth quoting:

I was struck through the workshop by a schism among attendees. One group believes, intuitively and viscerally, that human gaming–although quite powerful–is just a subset of modeling general. The other group believes, just as intuitively and viscerally, that human gaming is very different….

The impression had deep roots. Writings in the 1950s about defense modeling and systems analysis emphasized being scientific, rigorous, quantitative, and tied to mathematics. This was to be an antidote for hand-waving subjective assertions. That desire translated into an emphasis on “closed” models with no human interactions, which allowed reproducibility. Most DoD-level models have often been at theater or campaign level (e.g., IDAGAM, TACWAR, JICM, Thunder, and Storm). Many represent combat as akin to huge armies grinding each other down, as in the European theaters of World Wars I and II. such models are quite large, requiring considerable expertise and experience to understand.

Another development was standardized scenarios and date set with the term “data” referring to everything from facts to highly uncertain assumptions about scenario, commander decisions, and battle outcomes. Standardization allowed common baselines, which assured that policymakers would receive reports with common assumptions rather than diverse hidden assumptions chosen to favor advocates’ programs. The baselines also promoted joint thinking and assured a level playing field for joint analysis. Such reasons were prominent in DoD’s Analytic Agenda (later called Support for Strategic Analysis). Not surprisingly, however, the tendency was often to be disdainful of such other forms of modeling as the history-base formula models of Trevor Dupuy and the commercial board games of Jim Dunnigan and Mark Herman. These alternative approaches seen as somehow “lesser,” because they were allegedly less rigorous and scientific. Uncertainty analysis has been seriously inadequate. I have demurred on these matters for many years, as in the “Base of Sand” paper in 1993 and more recent monographs available on the RAND website….

The quantitative/qualitative split is a bugaboo. Many “soft” phenomena can be characterized with meaningful, albeit imprecise, numbers.

The Paul Davis “Base of Sand” paper from 1991 is here: https://www.rand.org/pubs/notes/N3148.html