Tag wargaming

Force Ratios in Conventional Combat

American soldiers of the 117th Infantry Regiment, Tennessee National Guard, part of the 30th Infantry Division, move past a destroyed American M5A1 “Stuart” tank on their march to recapture the town of St. Vith during the Battle of the Bulge, January 1945. [Wikipedia]
[This piece was originally posted on 16 May 2017.]

This post is a partial response to questions from one of our readers (Stilzkin). On the subject of force ratios in conventional combat….I know of no detailed discussion on the phenomenon published to date. It was clearly addressed by Clausewitz. For example:

At Leuthen Frederick the Great, with about 30,000 men, defeated 80,000 Austrians; at Rossbach he defeated 50,000 allies with 25,000 men. These however are the only examples of victories over an opponent two or even nearly three times as strong. Charles XII at the battle of Narva is not in the same category. The Russian at that time could hardly be considered as Europeans; moreover, we know too little about the main features of that battle. Bonaparte commanded 120,000 men at Dresden against 220,000—not quite half. At Kolin, Frederick the Great’s 30,000 men could not defeat 50,000 Austrians; similarly, victory eluded Bonaparte at the desperate battle of Leipzig, though with his 160,000 men against 280,000, his opponent was far from being twice as strong.

These examples may show that in modern Europe even the most talented general will find it very difficult to defeat an opponent twice his strength. When we observe that the skill of the greatest commanders may be counterbalanced by a two-to-one ratio in the fighting forces, we cannot doubt that superiority in numbers (it does not have to more than double) will suffice to assure victory, however adverse the other circumstances.

and:

If we thus strip the engagement of all the variables arising from its purpose and circumstance, and disregard the fighting value of the troops involved (which is a given quantity), we are left with the bare concept of the engagement, a shapeless battle in which the only distinguishing factors is the number of troops on either side.

These numbers, therefore, will determine victory. It is, of course, evident from the mass of abstractions I have made to reach this point that superiority of numbers in a given engagement is only one of the factors that determines victory. Superior numbers, far from contributing everything, or even a substantial part, to victory, may actually be contributing very little, depending on the circumstances.

But superiority varies in degree. It can be two to one, or three or four to one, and so on; it can obviously reach the point where it is overwhelming.

In this sense superiority of numbers admittedly is the most important factor in the outcome of an engagement, as long as it is great enough to counterbalance all other contributing circumstance. It thus follows that as many troops as possible should be brought into the engagement at the decisive point.

And, in relation to making a combat model:

Numerical superiority was a material factor. It was chosen from all elements that make up victory because, by using combinations of time and space, it could be fitted into a mathematical system of laws. It was thought that all other factors could be ignored if they were assumed to be equal on both sides and thus cancelled one another out. That might have been acceptable as a temporary device for the study of the characteristics of this single factor; but to make the device permanent, to accept superiority of numbers as the one and only rule, and to reduce the whole secret of the art of war to a formula of numerical superiority at a certain time and a certain place was an oversimplification that would not have stood up for a moment against the realities of life.

Force ratios were discussed in various versions of FM 105-5 Maneuver Control, but as far as I can tell, this was not material analytically developed. It was a set of rules, pulled together by a group of anonymous writers for the sake of being able to adjudicate wargames.

The only detailed quantification of force ratios was provided in Numbers, Predictions and War by Trevor Dupuy. Again, these were modeling constructs, not something that was analytically developed (although there was significant background research done and the model was validated multiple times). He then discusses the subject in his book Understanding War, which I consider the most significant book of the 90+ that he wrote or co-authored.

The only analytically based discussion of force ratios that I am aware of (or at least can think of at this moment) is my discussion in my upcoming book War by Numbers: Understanding Conventional Combat. It is the second chapter of the book: https://dupuyinstitute.dreamhosters.com/2016/02/17/war-by-numbers-iii/

In this book, I assembled the force ratios required to win a battle based upon a large number of cases from World War II division-level combat. For example (page 18 of the manuscript):

I did this for the ETO, for the battles of Kharkov and Kursk (Eastern Front 1943, divided by when the Germans are attacking and when the Soviets are attacking) and for PTO (Manila and Okinawa 1945).

There is more than can be done on this, and we do have the data assembled to do this, but as always, I have not gotten around to it. This is why I am already considering a War by Numbers II, as I am already thinking about all the subjects I did not cover in sufficient depth in my first book.

Human Factors In Warfare: Fear In A Lethal Environment

Chaplain (Capt.) Emil Kapaun (right) and Capt. Jerome A. Dolan, a medical officer with the 8th Cavalry Regiment, 1st Cavalry Division, carry an exhausted Soldier off the battlefield in Korea, early in the war. Kapaun was famous for exposing himself to enemy fire. When his battalion was overrun by a Chinese force in November 1950, rather than take an opportunity to escape, Kapaun voluntarily remained behind to minister to the wounded. In 2013, Kapaun posthumously received the Medal of Honor for his actions in the battle and later in a prisoner of war camp, where he died in May 1951. [Photo Credit: Courtesy of the U.S. Army Center of Military History]

[This piece was originally published on 27 June 2017.]

Trevor Dupuy’s theories about warfare were sometimes criticized by some who thought his scientific approach neglected the influence of the human element and chance and amounted to an attempt to reduce war to mathematical equations. Anyone who has read Dupuy’s work knows this is not, in fact, the case.

Moral and behavioral (i.e human) factors were central to Dupuy’s research and theorizing about combat. He wrote about them in detail in his books. In 1989, he presented a paper titled “The Fundamental Information Base for Modeling Human Behavior in Combat” at a symposium on combat modeling that provided a clear, succinct summary of his thinking on the topic.

He began by concurring with Carl von Clausewitz’s assertion that

[P]assion, emotion, and fear [are] the fundamental characteristics of combat… No one who has participated in combat can disagree with this Clausewitzean emphasis on passion, emotion, and fear. Without doubt, the single most distinctive and pervasive characteristic of combat is fear: fear in a lethal environment.

Despite the ubiquity of fear on the battlefield, Dupuy pointed out that there is no way to study its impact except through the historical record of combat in the real world.

We cannot replicate fear in laboratory experiments. We cannot introduce fear into field tests. We cannot create an environment of fear in training or in field exercises.

So, to study human reaction in a battlefield environment we have no choice but to go to the battlefield, not the laboratory, not the proving ground, not the training reservation. But, because of the nature of the very characteristics of combat which we want to study, we can’t study them during the battle. We can only do so retrospectively.

We have no choice but to rely on military history. This is why military history has been called the laboratory of the soldier.

He also pointed out that using military history analytically has its own pitfalls and must be handled carefully lest it be used to draw misleading or inaccurate conclusions.

I must also make clear my recognition that military history data is far from perfect, and that–even at best—it reflects the actions and interactions of unpredictable human beings. Extreme caution must be exercised when using or analyzing military history. A single historical example can be misleading for either of two reasons: (a) The data is inaccurate, or (b) The example may be true, but also be untypical.

But, when a number of respectable examples from history show consistent patterns of human behavior, then we can have confidence that behavior in accordance with the pattern is typical, and that behavior inconsistent with the pattern is either untypical, or is inaccurately represented.

He then stated very concisely the scientific basis for his method.

My approach to historical analysis is actuarial. We cannot predict the future in any single instance. But, on the basis of a large set of reliable experience data, we can predict what is likely to occur under a given set of circumstances.

Dupuy listed ten combat phenomena that he believed were directly or indirectly related to human behavior. He considered the list comprehensive, if not exhaustive.

I shall look at Dupuy’s treatment of each of these in future posts (click links above).

Artillery Effectiveness vs. Armor (Part 5-Summary)

U.S. Army 155mm field howitzer in Normandy. [padresteve.com]

[This series of posts is adapted from the article “Artillery Effectiveness vs. Armor,” by Richard C. Anderson, Jr., originally published in the June 1997 edition of the International TNDM Newsletter.]

Posts in the series
Artillery Effectiveness vs. Armor (Part 1)
Artillery Effectiveness vs. Armor (Part 2-Kursk)
Artillery Effectiveness vs. Armor (Part 3-Normandy)
Artillery Effectiveness vs. Armor (Part 4-Ardennes)
Artillery Effectiveness vs. Armor (Part 5-Summary)

Table IX shows the distribution of cause of loss by type or armor vehicle. From the distribution it might be inferred that better protected armored vehicles may be less vulnerable to artillery attack. Nevertheless, the heavily armored vehicles still suffered a minimum loss of 5.6 percent due to artillery. Unfortunately the sample size for heavy tanks was very small, 18 of 980 cases or only 1.8 percent of the total.

The data are limited at this time to the seven cases.[6] Further research is necessary to expand the data sample so as to permit proper statistical analysis of the effectiveness of artillery versus tanks.

NOTES

[18] Heavy armor includes the KV-1, KV-2, Tiger, and Tiger II.

[19] Medium armor includes the T-34, Grant, Panther, and Panzer IV.

[20] Light armor includes the T-60, T-70. Stuart, armored cars, and armored personnel carriers.

Artillery Effectiveness vs. Armor (Part 4-Ardennes)

Knocked-out Panthers in Krinkelt, Belgium, Battle of the Bulge, 17 December 1944. [worldwarphotos.info]

[This series of posts is adapted from the article “Artillery Effectiveness vs. Armor,” by Richard C. Anderson, Jr., originally published in the June 1997 edition of the International TNDM Newsletter.]

Posts in the series
Artillery Effectiveness vs. Armor (Part 1)
Artillery Effectiveness vs. Armor (Part 2-Kursk)
Artillery Effectiveness vs. Armor (Part 3-Normandy)
Artillery Effectiveness vs. Armor (Part 4-Ardennes)
Artillery Effectiveness vs. Armor (Part 5-Summary)

NOTES

[14] From ORS Joint Report No. 1. A total of an estimated 300 German armor vehicles were found following the battle.

[15] Data from 38th Infantry After Action Report (including “Sketch showing enemy vehicles destroyed by 38th Inf Regt. and attached units 17-20 Dec. 1944″), from 12th SS PzD strength report dated 8 December 1944, and from strengths indicated on the OKW briefing maps for 17 December (1st [circa 0600 hours], 2d [circa 1200 hours], and 3d [circa 1800 hours] situation), 18 December (1st and 2d situation), 19 December (2d situation), 20 December (3d situation), and 21 December (2d and 3d situation).

[16] Losses include confirmed and probable losses.

[17] Data from Combat Interview “26th Infantry Regiment at Dom Bütgenbach” and from 12th SS PzD, ibid.

Artillery Effectiveness vs. Armor (Part 3-Normandy)

The U.S. Army 333rd Field Artillery Battalion (Colored) in Normandy, July 1944 (US Army Photo/Tom Gregg)

[This series of posts is adapted from the article “Artillery Effectiveness vs. Armor,” by Richard C. Anderson, Jr., originally published in the June 1997 edition of the International TNDM Newsletter.]

Posts in the series
Artillery Effectiveness vs. Armor (Part 1)
Artillery Effectiveness vs. Armor (Part 2-Kursk)
Artillery Effectiveness vs. Armor (Part 3-Normandy)
Artillery Effectiveness vs. Armor (Part 4-Ardennes)
Artillery Effectiveness vs. Armor (Part 5-Summary)

NOTES

[10] From ORS Report No. 17.

[11] Five of the 13 counted as unknown were penetrated by both armor piercing shot and by infantry hollow charge weapons. There was no evidence to indicate which was the original cause of the loss.

[12] From ORS Report No. 17

[13] From ORS Report No. 15. The “Pocket” was the area west of the line Falaise-Argentan and east of the line Vassy-Gets-Domfront in Normandy that was the site in August 1944 of the beginning of the German retreat from France. The German forces were being enveloped from the north and south by Allied ground forces and were under constant, heavy air attack.

Artillery Effectiveness vs. Armor (Part 2-Kursk)

15 cm schwere Feldhaubitze 18 (15 cm s.FH 18 L/29,5)

German Army 150mm heavy field howitzer 18 L/29.5 battery. [Panzer DB/Pinterest]

[This series of posts is adapted from the article “Artillery Effectiveness vs. Armor,” by Richard C. Anderson, Jr., originally published in the June 1997 edition of the International TNDM Newsletter.]

Posts in the series
Artillery Effectiveness vs. Armor (Part 1)
Artillery Effectiveness vs. Armor (Part 2-Kursk)
Artillery Effectiveness vs. Armor (Part 3-Normandy)
Artillery Effectiveness vs. Armor (Part 4-Ardennes)
Artillery Effectiveness vs. Armor (Part 5-Summary)

Curiously, at Kursk, in the case where the highest percent loss was recorded, the German forces opposing the Soviet 1st Tank Army—mainly the XLVIII Panzer Corps of the Fourth Panzer Army—were supported by proportionately fewer artillery pieces (approximately 56 guns and rocket launchers per division) than the US 1st Infantry Division at Dom Bütgenbach (the equivalent of approximately 106 guns per division)[4]. Nor does it appear that the German rate of fire at Kursk was significantly higher than that of the American artillery at Dom Bütgenbach. On 20 July at Kursk, the 150mm howitzers of the 11th Panzer Division achieved a peak rate of fire of 87.21 rounds per gum. On 21 December at Dom Bütgenbach, the 155mm howitzers of the 955th Field Artillery Battalion achieved a peak rate of fire of 171.17 rounds per gun.[5]

NOTES

[4] The US artillery at Dom Bütgenbach peaked on 21 December 1944 when a total of 210 divisional and corps pieces fired over 10,000 rounds in support of the 1st Division’s 26th Infantry.

[5] Data collected on German rates of fire are fragmentary, but appear to be similar to that of the American Army in World War ll. An article on artillery rates of fire that explores the data in more detail will be forthcoming in a future issue of this newsletter. [NOTE: This article was not completed or published.]

Notes to Table I.

[8] The data were found in reports of the 1st Tank Army (Fond 299, Opis‘ 3070, Delo 226). Obvious math errors in the original document have been corrected (the total lost column did not always agree with the totals by cause). The total participated column evidently reflected the starting strength of the unit, plus replacement vehicles. “Burned'” in Soviet wartime documents usually indicated a total loss, however it appears that in this case “burned” denoted vehicles totally lost due to direct fire antitank weapons. “Breakdown” apparently included both mechanical breakdown and repairable combat damage.

[9] Note that the brigade report (Fond 3304, Opis‘ 1, Delo 24) contradicts the army report. The brigade reported that a total of 28 T-34s were lost (9 to aircraft and 19 to “artillery”) and one T-60 was destroyed by a mine. However, this report was made on 11 July, during the battle, and may not have been as precise as the later report recorded by 1st Tank Army. Furthermore, it is not as clear in the brigade report that “artillery” referred only to indirect fire HE and not simply lo both direct and indirect fire guns.

Artillery Effectiveness vs. Armor (Part 1)

A U.S. M1 155mm towed artillery piece being set up for firing during the Battle of the Bulge, December 1944.

[This series of posts is adapted from the article “Artillery Effectiveness vs. Armor,” by Richard C. Anderson, Jr., originally published in the June 1997 edition of the International TNDM Newsletter.]

Posts in the series
Artillery Effectiveness vs. Armor (Part 1)
Artillery Effectiveness vs. Armor (Part 2-Kursk)
Artillery Effectiveness vs. Armor (Part 3-Normandy)
Artillery Effectiveness vs. Armor (Part 4-Ardennes)
Artillery Effectiveness vs. Armor (Part 5-Summary)

The effectiveness of artillery against exposed personnel and other “soft” targets has long been accepted. Fragments and blast are deadly to those unfortunate enough to not be under cover. What has also long been accepted is the relative—if not total—immunity of armored vehicles when exposed to shell fire. In a recent memorandum, the United States Army Armor School disputed the results of tests of artillery versus tanks by stating, “…the Armor School nonconcurred with the Artillery School regarding the suppressive effects of artillery…the M-1 main battle tank cannot be destroyed by artillery…”

This statement may in fact be true,[1] if the advancement of armored vehicle design has greatly exceeded the advancement of artillery weapon design in the last fifty years. [Original emphasis] However, if the statement is not true, then recent research by TDI[2] into the effectiveness of artillery shell fire versus tanks in World War II may be illuminating.

The TDI search found that an average of 12.8 percent of tank and other armored vehicle losses[3] were due to artillery fire in seven eases in World War II where the cause of loss could be reliably identified. The highest percent loss due to artillery was found to be 14.8 percent in the case of the Soviet 1st Tank Army at Kursk (Table II). The lowest percent loss due to artillery was found to be 5.9 percent in the case of Dom Bütgenbach (Table VIII).

The seven cases are split almost evenly between those that show armor losses to a defender and those that show losses to an attacker. The first four cases (Kursk, Normandy l. Normandy ll, and the “Pocket“) are engagements in which the side for which armor losses were recorded was on the defensive. The last three cases (Ardennes, Krinkelt. and Dom Bütgenbach) are engagements in which the side for which armor losses were recorded was on the offensive.

Four of the seven eases (Normandy I, Normandy ll, the “Pocket,” and Ardennes) represent data collected by operations research personnel utilizing rigid criteria for the identification of the cause of loss. Specific causes of loss were only given when the primary destructive agent could be clearly identified. The other three cases (Kursk, Krinkelt, and Dom Bütgenbach) are based upon combat reports that—of necessity—represent less precise data collection efforts.

However, the similarity in results remains striking. The largest identifiable cause of tank loss found in the data was, predictably, high-velocity armor piercing (AP) antitank rounds. AP rounds were found to be the cause of 68.7 percent of all losses. Artillery was second, responsible for 12.8 percent of all losses. Air attack as a cause was third, accounting for 7.4 percent of the total lost. Unknown causes, which included losses due to hits from multiple weapon types as well as unidentified weapons, inflicted 6.3% of the losses and ranked fourth. Other causes, which included infantry antitank weapons and mines, were responsible for 4.8% of the losses and ranked fifth.

NOTES

[1] The statement may be true, although it has an “unsinkable Titanic,” ring to it. It is much more likely that this statement is a hypothesis, rather than a truism.

[2] As pan of this article a survey of the Research Analysis Corporation’s publications list was made in an attempt to locate data from previous operations research on the subject. A single reference to the study of tank losses was found. Group 1 Alvin D. Coox and L. Van Loan Naisawald, Survey of Allied Tank Casualties in World War II, CONFIDENTIAL ORO Report T-117, 1 March 1951.

[3] The percentage loss by cause excludes vehicles lost due to mechanical breakdown or abandonment. lf these were included, they would account for 29.2 percent of the total lost. However, 271 of the 404 (67.1%) abandoned were lost in just two of the cases. These two cases (Normandy ll and the Falaise Pocket) cover the period in the Normandy Campaign when the Allies broke through the German defenses and began the pursuit across France.

Artillery Survivability In Modern Combat

The U.S. Army’s M109A6 Paladin 155 mm Self-Propelled Howitzer. [U.S. Army]
[This piece was originally published on 17 July 2017.]

Much attention is being given in the development of the U.S. joint concept of Multi-Domain Battle (MDB) to the implications of recent technological advances in long-range precision fires. It seems most of the focus is being placed on exploring the potential for cross-domain fires as a way of coping with the challenges of anti-access/area denial strategies employing long-range precision fires. Less attention appears to be given to assessing the actual combat effects of such weapons. The prevailing assumption is that because of the increasing lethality of modern weapons, battle will be bloodier than it has been in recent experience.

I have taken a look in previous posts at how the historical relationship identified by Trevor Dupuy between weapon lethality, battlefield dispersion, and casualty rates argues against this assumption with regard to personnel attrition and tank loss rates. What about artillery loss rates? Will long-range precision fires make ground-based long-range precision fire platforms themselves more vulnerable? Historical research suggests that trend was already underway before the advent of the new technology.

In 1976, Trevor Dupuy and the Historical Evaluation and Research Organization (HERO; one of TDI’s corporate ancestors) conducted a study sponsored by Sandia National Laboratory titled “Artillery Survivability in Modern War.” (PDF) The study focused on looking at historical artillery loss rates and the causes of those losses. It drew upon quantitative data from the 1973 Arab-Israel War, the Korean War, and the Eastern Front during World War II.

Conclusions

1. In the early wars of the 20th Century, towed artillery pieces were relatively invulnerable, and they were rarely severely damaged or destroyed except by very infrequent direct hits.

2. This relative invulnerability of towed artillery resulted in general lack of attention to the problems of artillery survivability through World War II.

3. The lack of effective hostile counter-artillery resources in the Korean and Vietnam wars contributed to continued lack of attention to the problem of artillery survivability, although increasingly armies (particularly the US Army) were relying on self-propelled artillery pieces.

4. Estimated Israeli loss statistics of the October 1973 War suggest that because of size and characteristics, self-propelled artillery is more vulnerable to modern counter-artillery means than was towed artillery in that and previous wars; this greater historical physical vulnerability of self-propelled weapons is consistent with recent empirical testing by the US Army.

5. The increasing physical vulnerability of modern self-propelled artillery weapons is compounded by other modern combat developments, including:

a. Improved artillery counter-battery techniques and resources;
b. Improved accuracy of air-delivered munitions;
c..increased lethality of modern artillery ammunition; and
d. Increased range of artillery and surface-to-surface missiles suitable for use against artillery.

6. Despite this greater vulnerability of self-propelled weapons, Israeli experience in the October war demonstrated that self-propelled artillery not only provides significant protection to cannoneers but also that its inherent mobility permits continued effective operation under circumstances in which towed artillery crews would be forced to seek cover, and thus be unable to fire their weapons. ‘

7. Paucity of available processed, compiled data on artillery survivability and vulnerability limits analysis and the formulation of reliable artillery loss experience tables or formulae.

8. Tentative analysis of the limited data available for this study indicates the following:

a. In “normal” deployment, percent weapon losses by standard weight classification are in the following proportions:

b. Towed artillery losses to hostile artillery (counterbattery) appear in general to very directly with battle intensity (as measured by percent personnel casualties per day), at a rate somewhat less than half of the percent personnel losses for units of army strength or greater; this is a straight-line relationship, or close to it; the stronger or more effective the hostile artillery is, the steeper the slope of the curve;

c. Towed artillery losses to all hostile anti-artillery means appears in general to vary directly with battle intensity at a rate about two-thirds of the-percent personnel losses for units of army strength or greater; the curve rises slightly more rapidly in high intensity combat than in normal or low-intensity combat; the stronger or more effective the hostile anti-artillery means (primarily air and counter-battery), the steeper the slope of the curve;

d. Self-propelled artillery losses appear to be generally consistent with towed losses, but at rates at least twice as great in comparison to battle intensity.

9. There are available in existing records of US and German forces in World war II, and US forces in the Korean and Vietnam Wars, unit records and reports that will permit the formulation of reliable artillery loss experience tables and formulae for those conflicts; these, with currently available and probably improved, data from the Arab-Israeli wars, will permit the formulation of reliable artillery loss experience tables and formulae for simulations of modern combat under current and foreseeable future conditions.

The study caveated these conclusions with the following observations:

Most of the artillery weapons in World War II were towed weapons. By the time the United States had committed small but significant numbers of self-propelled artillery pieces in Europe, German air and artillery counter-battery retaliatory capabilities had been significantly reduced. In the Korean and Vietnam wars, although most American artillery was self-propelled, the enemy had little counter-artillery capability either in the air or in artillery weapons and counter-battery techniques.

It is evident from vulnerability testing of current Army self-propelled weapons, that these weapons–while offering much more protection to cannoneers and providing tremendous advantages in mobility–are much more vulnerable to hostile action than are towed weapons, and that they are much more subject to mechanical breakdowns involving either the weapons mountings or the propulsion elements. Thus there cannot be a direct relationship between aggregated World War II data, or even aggregated Korean war or October War data, and current or future artillery configurations. On the other hand, the body of data from the October war where artillery was self-propelled is too small and too specialized by environmental and operational circumstances to serve alone as a paradigm of artillery vulnerability.

Despite the intriguing implications of this research, HERO’s proposal for follow on work was not funded. HERO only used easily accessible primary and secondary source data for the study. It noted much more primary source data was likely available but that it would require a significant research effort to compile it. (Research is always the expensive tent-pole in quantitative historical analysis. This seems to be why so little of it ever gets funded.) At the time of the study in 1976, no U.S. Army organization could identify any existing quantitative historical data or analysis on artillery losses, classified or otherwise. A cursory search on the Internet reveals no other such research as well. Like personnel attrition and tank loss rates, it would seem that artillery loss rates would be another worthwhile subject for quantitative analysis as part of the ongoing effort to develop the MDB concept.

Human Factors In Warfare: Suppression

Images from a Finnish Army artillery salvo fired by towed 130mm howitzers during an exercise in 2013. [Puolustusvoimat – Försvarsmakten – The Finnish Defence Forces/YouTube]
[This piece was originally posted on 24 August 2017.]

According to Trevor Dupuy, “Suppression is perhaps the most obvious and most extensive manifestation of the impact of fear on the battlefield.” As he detailed in Understanding War: History and Theory of Combat (1987),

There is probably no obscurity of combat requiring clarification and understanding more urgently than that of suppression… Suppression usually is defined as the effect of fire (primarily artillery fire) upon the behavior of hostile personnel, reducing, limiting, or inhibiting their performance of combat duties. Suppression lasts as long as the fires continue and for some brief, indeterminate period thereafter. Suppression is the most important effect of artillery fire, contributing directly to the ability of the supported maneuver units to accomplish their missions while preventing the enemy units from accomplishing theirs. (p. 251)

Official US Army field artillery doctrine makes a distinction between “suppression” and “neutralization.” Suppression is defined to be instantaneous and fleeting; neutralization, while also temporary, is relatively longer-lasting. Neutralization, the doctrine says, results when suppressive effects are so severe and long-lasting that a target is put out of action for a period of time after the suppressive fire is halted. Neutralization combines the psychological effects of suppressive gunfire with a certain amount of damage. The general concept of neutralization, as distinct from the more fleeting suppression, is a reasonable one. (p. 252)

Despite widespread acknowledgement of the existence of suppression and neutralization, the lack of interest in analyzing its effects was a source of professional frustration for Dupuy. As he commented in 1989,

The British did some interesting but inconclusive work on suppression in their battlefield operations research in World War II. In the United States I am aware of considerable talk about suppression, but very little accomplishment, over the past 20 years. In the light of the significance of suppression, our failure to come to grips with the issue is really quite disgraceful.

This lack of interest is curious, given that suppression and neutralization remain embedded in U.S. Army combat doctrine to this day. The current Army definitions are:

Suppression – In the context of the computed effects of field artillery fires, renders a target ineffective for a short period of time producing at least 3-percent casualties or materiel damage. [Army Doctrine Reference Publication (ADRP) 1-02, Terms and Military Symbols, December 2015, p. 1-87]

Neutralization – In the context of the computed effects of field artillery fires renders a target ineffective for a short period of time, producing 10-percent casualties or materiel damage. [ADRP 1-02, p. 1-65]

A particular source for Dupuy’s irritation was the fact that these definitions were likely empirically wrong. As he argued in Understanding War,

This is almost certainly the wrong way to approach quantification of neutralization. Not only is there no historical evidence that 10% casualties are enough to achieve this effect, there is no evidence that any level of losses is required to achieve the psycho-physiological effects of suppression or neutralization. Furthermore, the time period in which casualties are incurred is probably more important than any arbitrary percentage of loss, and the replacement of casualties and repair of damage are probably irrelevant. (p. 252)

Thirty years after Dupuy pointed this problem out, the construct remains enshrined in U.S. doctrine, unquestioned and unsubstantiated. Dupuy himself was convinced that suppression probably had little, if anything, to do with personnel loss rates.

I believe now that suppression is related to and probably a component of disruption caused by combat processes other than surprise, such as a communications failure. Further research may reveal, however, that suppression is a very distinct form of disruption that can be measured or estimated quite independently of disruption caused by any other phenomenon. (Understanding War, p. 251)

He had developed a hypothesis for measuring the effects of suppression, but was unable to interest anyone in the U.S. government or military in sponsoring a study on it. Suppression as a combat phenomenon remains only vaguely understood.

The Combat Value of Surprise

American soldiers being marched down a road after capture by German troops in the Ardennes, December 1944.
American soldiers being marched down a road after capture by German troops in the Ardennes, December 1944.

[This article was originally posted on 1 December 2016]

In his recent analysis of the role of conventional armored forces in Russian hybrid warfare, U.S. Army Major Amos Fox noted an emphasis on tactical surprise.

Changes to Russian tactics typify the manner in which Russia now employs its ground force. Borrowing from the pages of military theorist Carl von Clausewitz, who stated, “It is still more important to remember that almost the only advantage of the attack rests on its initial surprise,” Russia’s contemporary operations embody the characteristic of surprise. Russian operations in Georgia and Ukraine demonstrate a rapid, decentralized attack seeking to temporally dislocate the enemy, triggering the opposing forces’ defeat.

Tactical surprise enabled by electronic, cyber, information and unconventional warfare capabilities, combined with mobile and powerful combined arms brigade tactical groups, and massive and lethal long-range fires provide Russian Army ground forces with formidable combat power.

Trevor Dupuy considered the combat value of surprise to be important enough to cite it as one of his “timeless verities of combat.”

Surprise substantially enhances combat power. Achieving surprise in combat has always been important. It is perhaps more important today than ever. Quantitative analysis of historical combat shows that surprise has increased the combat power of military forces in those engagements in which it was achieved. Surprise has proven to be the greatest of all combat multipliers. It may be the most important of the Principles of War; it is at least as important as Mass and Maneuver.

In addition to acting as combat power multiplier, Dupuy observed that surprise decreases the casualties of a surprising force and increases those of a surprised one. Surprise also enhances advance rates for forces that achieve it.

In his combat models, Dupuy categorized tactical surprise as complete, substantial, and minor; defining the level achieved was a matter of analyst judgement. The combat effects of surprise in battle would last for three days, declining by one-third each day.

He developed two methods for applying the effects of surprise in calculating combat power, each yielding the same general overall influence. In his original Quantified Judgement Model (QJM) detailed in Numbers, Predictions and War: The Use of History to Evaluate and Predict the Outcome of Armed Conflict (1977), factors for surprise were applied to calculations for vulnerability and mobility, which in turn were applied to the calculation of overall combat power. The net value of surprise on combat power ranged from a factor of about 2.24 for complete surprise to 1.10 for minor surprise.

For a simplified version of his combat power calculation detailed in Attrition: Forecasting Battle Casualties and Equipment Losses in Modern War (1990), Dupuy applied a surprise combat multiplier value directly to the calculation of combat power. These figures also ranged between 2.20 for complete surprise and 1.10 for minor surprise.

Dupuy established these values for surprise based on his judgement of the difference between the calculated outcome of combat engagements in his data and theoretical outcomes based on his models. He never validated them back to his data himself. However, TDI President Chris Lawrence recently did conduct substantial tests on TDI’s expanded combat databases in the context of analyzing the combat value of situational awareness. The results are described in detail in his forthcoming book, War By Numbers: Understanding Conventional Combat.