Tag U.S. Army

UPDATE: Should The U.S. Army Add More Tube Artillery To It Combat Units?

A 155mm Paladin howitzer with 1st Battery, 10th Field Artillery, 3rd Brigade Combat Team, Task Force Liberty stands ready for a fire mission at forward operating base Gabe April 16, 2005. [U.S. Department of Defense/DVIDS]

In response to my recent post looking at the ways the U.S. is seeking to improve its long range fires capabilities, TDI received this comment via Twitter:

@barefootboomer makes a fair point. It appears that the majority of the U.S. Army’s current efforts to improve its artillery capabilities are aimed at increasing lethality and capability of individual systems, but not actually adding additional guns to the force structure.

Are Army combat units undergunned in the era of multi-domain battle? The Mobile Protected Firepower program is intended to provide additional light tanks high-caliber direct fire guns to the Infantry Brigade Combat Teams. In his recent piece at West Point’s Modern War Institute blog, Captain Brandon Morgan recommended increasing the proportion of U.S. corps rocket artillery to tube artillery systems from roughly 1:4 to something closer to the current Russian Army ratio of 3:4.

Should the Army be adding other additional direct or indirect fires systems to its combat forces? What types and at what levels? Direct or indirect fire? More tubes per battery? More batteries? More battalions?

What do you think?

UPDATE: I got a few responses to my queries. The balance reflected this view:

@barefootboomer elaborated on his original point:

There were not many specific suggestions about changes to the existing forces structure, except for this one:

Are there any other thoughts or suggestions out there about this, or is the consensus that the Army is already pretty much on the right course toward fixing its fires problems?

Status Update On U.S. Long Range Fires Capabilities

Soldiers fire an M777A2 howitzer while supporting Iraqi security forces near al-Qaim, Iraq, Nov. 7, 2017, as part of the operation to defeat the Islamic State of Iraq and Syria. [Spc. William Gibson/U.S. Army]

Earlier this year, I noted that the U.S. is investing in upgrading its long range strike capabilities as part of its multi-domain battle doctrinal response to improving Chinese, Russian, and Iranian anti-access/area denial (A2/AD) capabilities. There have been a few updates on the progress of those investments.

The U.S. Army Long Range Fires Cross Functional Team

A recent article in Army Times by Todd South looked at some of the changes being implemented by the U.S. Army cross functional team charged with prioritizing improvements in the service’s long range fires capabilities. To meet a requirement to double the ranges of its artillery systems within five years, “the Army has embarked upon three tiers of focus, from upgrading old school artillery cannons, to swapping out its missile system to double the distance it can fire, and giving the Army a way to fire surface-to-surface missiles at ranges of 1,400 miles.”

The Extended Range Cannon Artillery program is working on rocket assisted munitions to double the range of the Army’s workhouse 155mm guns to 24 miles, with some special rounds capable of reaching targets up to 44 miles away. As I touched on recently, the Army is also looking into ramjet rounds that could potentially increase striking range to 62 miles.

To develop the capability for even longer range fires, the Army implemented a Strategic Strike Cannon Artillery program for targets up to nearly 1,000 miles, and a Strategic Fires Missile effort enabling targeting out to 1,400 miles.

The Army is also emphasizing retaining trained artillery personnel and an improved training regime which includes large-scale joint exercises and increased live-fire opportunities.

Revised Long Range Fires Doctrine

But better technology and training are only part of the solution. U.S. Army Captain Harrison Morgan advocated doctrinal adaptations to shift Army culture away from thinking of fires solely as support for maneuver elements. Among his recommendations are:

  • Increasing the proportion of U.S. corps rocket artillery to tube artillery systems from roughly 1:4 to something closer to the current Russian Army ratio of 3:4.
  • Fielding a tube artillery system capable of meeting or surpassing the German-made PZH 2000, which can strike targets out to 30 kilometers with regular rounds, sustain a firing rate of 10 rounds per minute, and strike targets with five rounds simultaneously.
  • Focus on integrating tube and rocket artillery with a multi-domain, joint force to enable the destruction of the majority of enemy maneuver forces before friendly ground forces reach direct-fire range.
  • Allow tube artillery to be task organized below the brigade level to provide indirect fires capabilities to maneuver battalions, and make rocket artillery available to division and brigade commanders. (Morgan contends that the allocation of indirect fires capabilities to maneuver battalions ended with the disbanding of the Army’s armored cavalry regiments in 2011.)
  • Increase training in use of unmanned aerial vehicle (UAV) assets at the tactical level to locate, target, and observe fires.

U.S. Air Force and U.S. Navy Face Long Range Penetrating Strike Challenges

The Army’s emphasis on improving long range fires appears timely in light of the challenges the U.S. Air Force and U.S. Navy face in conducting long range penetrating strikes mission in the A2/AD environment. A fascinating analysis by Jerry Hendrix for the Center for a New American Security shows the current strategic problems stemming from U.S. policy decisions taken in the early 1990s following the end of the Cold War.

In an effort to generate a “peace dividend” from the fall of the Soviet Union, the Clinton administration elected to simplify the U.S. military force structure for conducting long range air attacks by relieving the Navy of its associated responsibilities and assigning the mission solely to the Air Force. The Navy no longer needed to replace its aging carrier-based medium range bombers and the Air Force pushed replacements for its aging B-52 and B-1 bombers into the future.

Both the Air Force and Navy emphasized development and acquisition of short range tactical aircraft which proved highly suitable for the regional contingencies and irregular conflicts of the 1990s and early 2000s. Impressed with U.S. capabilities displayed in those conflicts, China, Russia, and Iran invested in air defense and ballistic missile technologies specifically designed to counter American advantages.

The U.S. now faces a strategic environment where its long range strike platforms lack the range and operational and technological capability to operate within these AS/AD “bubbles.” The Air Force has far too few long range bombers with stealth capability, and neither the Air Force nor Navy tactical stealth aircraft can carry long range strike missiles. The missiles themselves lack stealth capability. The short range of the Navy’s aircraft and insufficient numbers of screening vessels leave its aircraft carriers vulnerable to ballistic missile attack.

Remedying this state of affairs will take time and major investments in new weapons and technological upgrades. However, with certain upgrades, Hendrix sees the current Air Force and Navy force structures capable of providing the basis for a long range penetrating strike operational concept effective against A2/AD defenses. The unanswered question is whether these upgrades will be implemented at all.

U.S. Army Mobile Protected Firepower (MPF) Program Update

BAE Systems has submitted its proposal to the U.S. Army to build and test the Mobile Protected Firepower (MPF) vehicle [BAE Systems/Fox News]

When we last checked in with the U.S. Army’s Mobile Protected Firepower (MPF) program—an effort to quickly field a new light tank lightweight armored vehicle with a long-range direct fire capability—Request for Proposals (RFPs) were expected by November 2017 and the first samples by April 2018. It now appears the first MPF prototypes will not be delivered before mid-2020 at the earliest.

According to a recent report by Kris Osborn on Warrior Maven, “The service expects to award two Engineering Manufacturing and Development (EMD) deals by 2019 as part of an initial step to building prototypes from multiple vendors, service officials said. Army statement said initial prototypes are expected within 14 months of a contract award.”

Part of the delay appears to stem from uncertainty about requirements. As Osborn reported, “For the Army, the [MPF} effort involves what could be described as a dual-pronged acquisition strategy in that it seeks to leverage currently available or fast emerging technology while engineering the vehicle with an architecture such that it can integrate new weapons and systems as they emerge over time.”

Among the technologies the Army will seek to integrate into the MPF are a lightweight, heavy caliber main gun, lightweight armor composites, active protection systems, a new generation of higher-resolution targeting sensors, greater computer automation, and artificial intelligence.

Osborn noted that

the Army’s Communications Electronics Research, Development and Engineering Center (CERDEC) is already building prototype sensors – with this in mind. In particular, this early work is part of a longer-range effort to inform the Army’s emerging Next-Generation Combat Vehicle (NGCV). The NGCV, expected to become an entire fleet of armored vehicles, is now being explored as something to emerge in the late 2020s or early 2030s.

These evolving requirements are already impacting the Army’s approach to fielding MPF. It originally intended to “do acquisition differently to deliver capability quickly.” MPF program director Major General David Bassett declared in October 2017, “We expect to be delivering prototypes off of that program effort within 15 months of contract award…and getting it in the hands of an evaluation unit six months after that — rapid!

It is now clear the Army won’t be meeting that schedule after all. Stay tuned.

The Origins Of The U.S. Army’s Concept Of Combat Power

The U.S. Army’s concept of combat power can be traced back to the thinking of British theorist J.F.C. Fuller, who collected his lectures and thoughts into the book, The Foundations of the Science of War (1926).

In a previous post, I critiqued the existing U.S. Army doctrinal method for calculating combat power. The ideas associated with the term “combat power” have been a part of U.S Army doctrine since the 1920s. However, the Army did not specifically define what combat power actually meant until the 1982 edition of FM 100-5 Operations, which introduced the AirLand Battle concept. So where did the Army’s notion of the concept originate? This post will trace the way it has been addressed in the capstone Field Manual (FM) 100-5 Operations series.

As then-U.S. Army Major David Boslego explained in a 1995 School of Advanced Military Studies (SAMS) thesis[1], the Army’s original idea of combat power most likely derived from the work of British military theorist J.F.C. Fuller. In the late 1910s and early 1920s, Fuller articulated the first modern definitions of the principles of war, which he developed from his conception of force on the battlefield as something more than just the tangible effects of shock and firepower. Fuller’s principles were adopted in the 1920 edition of the British Army Field Service Regulations (FSR), which was the likely vector of influence on the U.S. Army’s 1923 FSR. While the term “combat power” does not appear in the 1923 FSR, the influence of Fullerian thinking is evident.

The first use of the phrase itself by the Army can be found in the 1939 edition of FM 100-5 Tentative Field Service Regulations, Operations, which replaced and updated the 1923 FSR. It appears just twice and was not explicitly defined in the text. As Boslego noted, however, even then the use of the term

highlighted a holistic view of combat power. This power was the sum of all factors which ultimately affected the ability of the soldiers to accomplish the mission. Interestingly, the authors of the 1939 edition did not focus solely on the physical objective of destroying the enemy. Instead, they sought to break the enemy’s power of resistance which connotes moral as well as physical factors.

This basic, implied definition of combat power as a combination of interconnected tangible physical and intangible moral factors could be found in all successive editions of FM 100-5 through 1968. The type and character of the factors comprising combat power evolved along with the Army’s experience of combat through this period, however. In addition to leadership, mobility, and firepower, the 1941 edition of FM 100-5 included “better armaments and equipment,” which reflected the Army’s initial impressions of the early “blitzkrieg” battles of World War II.

From World War II Through Korea

While FM 100-5 (1944) and  FM 100-5 (1949) made no real changes with respect to describing combat power, the 1954 edition introduced significant new ideas in the wake of major combat operations in Korea, albeit still without actually defining the term. As with its predecessors, FM 100-5 (1954) posited combat power as a combination of firepower, maneuver, and leadership. For the first time, it defined the principles of mass, unity of command, maneuver, and surprise in terms of combat power. It linked the principle of the offensive, “only offensive action achieves decisive results,” with the enduring dictum that “offensive action requires the concentration of superior combat power at the decisive point and time.”

Boslego credited the authors of FM 100-5 (1954) with recognizing the non-linear nature of warfare and advising commanders to take a holistic perspective. He observed that they introduced the subtle but important understanding of combat power not as a fixed value, but as something relative and interactive between two forces in battle. Any calculation of combat power would be valid only in relation to the opposing combat force. “Relative combat power is dynamic and can be directly influenced by opposing commanders. It therefore must be analyzed by the commander in its potential relation to all other factors.” One of the fundamental ways a commander could shift the balance of combat power against an enemy was through maneuver: “Maneuver must be used to alter the relative combat power of military forces.”

[As I mentioned in a previous post, Trevor Dupuy considered FM 100-5 (1954)’s list and definitions of the principles of war to be the best version.]

Into the “Pentomic Era”

The 1962 edition of FM 100-5 supplied a general definition of combat power that articulated the way the Army had been thinking about it since 1939.

Combat power is a combination of the physical means available to a commander and the moral strength of his command. It is significant only in relation to the combat power of the opposing forces. In applying the principles of war, the development and application of combat power are essential to decisive results.

It further refined the elements of combat power by redefining the principles of economy of force and security in terms of it as well.

By the early 1960s, however, the Army’s thinking about force on the battlefield was dominated by the prospect of the use of nuclear weapons. As Boslego noted, both FM 100-5 (1962) and FM 100-5 (1968)

dwelt heavily on the importance of dispersing forces to prevent major losses from a single nuclear strike, being highly mobile to mass at decisive points and being flexible in adjusting forces to the current situation. The terms dispersion, flexibility, and mobility were repeated so frequently in speeches, articles, and congressional testimony, that…they became a mantra. As a result, there was a lack of rigor in the Army concerning what they meant in general and how they would be applied on the tactical battlefield in particular.

The only change the 1968 edition made was to expand the elements of combat power to include “firepower, mobility, communications, condition of equipment, and status of supply,” which presaged an increasing focus on the technological aspects of combat and warfare.

The first major modification in the way the Army thought about combat power since before World War II was reflected in FM 100-5 (1976). These changes in turn prompted a significant reevaluation of the concept by then-U.S. Army Major Huba Wass de Czege. I will tackle how this resulted in the way combat power was redefined in the 1982 edition of FM 100-5 in a future post.

Notes

[1] David V. Boslego, “The Relationship of Information to the Relative Combat Power Model in Force XXI Engagements,” School of Advanced Military Studies Monograph, U.S. Army Command and General Staff College, Fort Leavenworth, Kansas, 1995.

Dupuy/DePuy

Trevor N. Dupuy (1916-1995) and General William E. DePuy (1919-1992)

I first became acquainted with Trevor Dupuy and his work after seeing an advertisement for his book Numbers, Prediction & War in Simulation Publications, Inc.’s (SPI) Strategy & Tactics war gaming magazine way back in the late 1970s. Although Dupuy was already a prolific military historian, this book brought him to the attention of an audience outside of the insular world of the U.S. government military operations research and analysis community.

Ever since, however, Trevor Dupuy has been occasionally been confused with one of his contemporaries, U.S. Army General William E. DePuy. DePuy was notable in his own right, primarily as the first commander of the U.S. Army Training and Doctrine Command (TRADOC) from 1973 to 1977, and as one of the driving intellectual forces behind the effort to reorient the U.S. Army back to conventional warfare following the Vietnam War.

The two men had a great deal in common. They were born within three years of one another and both served in the U.S. Army during World War II. Both possessed an analytical bent and each made significant contributions to institutional and public debates about combat and warfare in the late 20th century. Given that they tilled the same topical fields at about the same time, it does not seem too odd that they were mistaken for each other.

Perhaps the most enduring link between the two men has been a shared name, though they spelled and pronounced it differently. The surname Dupuy is of medieval French origin and has been traced back to LePuy, France, in the province of Languedoc. It has several variant spellings, including DePuy and Dupuis. The traditional French pronunciation is “do-PWEE.” This is how Trevor Dupuy said his name.

However, following French immigration to North America beginning in the 17th century, the name evolved an anglicized spelling, DePuy (or sometimes Depew), and pronunciation, “deh-PEW.” This is the way General DePuy said it.

It is this pronunciation difference in conversation that has tipped me off personally to the occasional confusion in identities. Though rare these days, it still occurs. While this is a historical footnote, it still seems worth gently noting that Trevor Dupuy and William DePuy were two different people.

TDI Friday Read: Measuring The Effects of Combat in Cities

Between 2001 and 2004, TDI undertook a series of studies on the effects of urban combat in cities for the U.S. Army Center for Army Analysis (CAA). These studies examined a total of 304 cases of urban combat at the divisional and battalion level that occurred between 1942 and 2003, as well as 319 cases of concurrent non-urban combat for comparison.

The primary findings of Phases I-III of the study were:

  • Urban terrain had no significantly measurable influence on the outcome of battle.
  • Attacker casualties in the urban engagements were less than in the non-urban engagements and the casualty exchange ratio favored the attacker as well.
  • One of the primary effects of urban terrain is that it slowed opposed advance rates. The average advance rate in urban combat was one-half to one-third that of non-urban combat.
  • There is little evidence that combat operations in urban terrain resulted in a higher linear density of troops.
  • Armor losses in urban terrain were the same as, or lower than armor losses in non-urban terrain. In some cases it appears that armor losses were significantly lower in urban than non-urban terrain.
  • Urban terrain did not significantly influence the force ratio required to achieve success or effectively conduct combat operations.
  • Overall, it appears that urban terrain was no more stressful a combat environment during actual combat operations than was non-urban terrain.
  • Overall, the expenditure of ammunition in urban operations was not greater than that in non-urban operations. There is no evidence that the expenditure of other consumable items (rations; water; or fuel, oil, or lubricants) was significantly different in urban as opposed to non-urban combat.
  • Since it was found that advance rates in urban combat were significantly reduced, then it is obvious that these two effects (advance rates and time) were interrelated. It does appear that the primary impact of urban combat was to slow the tempo of operations.

In order to broaden and deepen understanding of the effects of urban combat, TDI proposed several follow-up studies. To date, none of these have been funded:

  1. Conduct a detailed study of the Battle of Stalingrad. Stalingrad may also represent one of the most intense examples of urban combat, so may provide some clues to the causes of the urban outliers.
  2. Conduct a detailed study of battalion/brigade-level urban combat. This would begin with an analysis of battalion-level actions from the first two phases of this study (European Theater of Operations and Eastern Front), added to the battalion-level actions completed in this third phase of the study. Additional battalion-level engagements would be added as needed.
  3. Conduct a detailed study of the outliers in an attempt to discover the causes for the atypical nature of these urban battles.
  4. Conduct a detailed study of urban warfare in an unconventional warfare setting.

Details of the Phase I-III study reports and conclusions can be found below:

Measuring The Effects Of Combat In Cities, Phase I

Measuring the Effects of Combat in Cities, Phase II – part 1

Measuring the Effects of Combat in Cities, Phase II – part 2

Measuring the Effects of Combat in Cities, Phase III – part 1

Measuring the Effects of Combat in Cities, Phase III – part 2

Measuring the Effects of Combat in Cities, Phase III – part 2.1

Measuring the Effects of Combat in Cities, Phase III – part 3

Urban Phase IV – Stalingrad

Urban Combat in War by Numbers

Measuring the Effects of Combat in Cities, Phase III – part 1

Now comes Phase III of this effort. The Phase I report was dated 11 January 2002 and covered the European Theater of Operations (ETO). The Phase II report [Part I and Part II] was dated 30 June 2003 and covered the Eastern Front (the three battles of Kharkov). Phase III was completed in 31 July 2004 and covered the Battle of Manila in the Pacific Theater, post-WWII engagements, and battalion-level engagements. It was a pretty far ranging effort.

In the case of Manila, this was the first time that we based our analysis using only one-side data (U.S. only). In this case, the Japanese tended to fight to almost the last man. We occupied the field of combat after the battle and picked up their surviving unit records. Among the Japanese, almost all died and only a few were captured by the U.S. So, we had fairly good data from the U.S. intelligence files. Regardless, the U.S. battle reports for Japanese data was the best data available. This allowed us to work with one-sided data. The engagements were based upon the daily operations of the U.S. Army’s 37th Infantry Division and the 1st Cavalry Division.

Conclusions (from pages 44-45):

The overall conclusions derived from the data analysis in Phase I were as follows, while those from this Phase III analysis are in bold italics.

  1. Urban combat did not significantly influence the Mission Accomplishment (Outcome) of the engagements. Phase III Conclusion: This conclusion was further supported.
  2. Urban combat may have influenced the casualty rate. If so, it appears that it resulted in a reduction of the attacker casualty rate and a more favorable casualty exchange ratio compared to non-urban warfare. Whether or not these differences are caused by the data selection or by the terrain differences is difficult to say, but regardless, there appears to be no basis to the claim that urban combat is significantly more intense with regards to casualties than is non-urban warfare. Phase III Conclusion: This conclusion was further supported. If urban combat influenced the casualty rate, it appears that it resulted in a reduction of the attacker casualty rate and a more favorable casualty exchange ratio compared to non-urban warfare. There still appears to be no basis to the claim that urban combat is significantly more intense with regards to casualties than is non-urban warfare.
  3. The average advance rate in urban combat should be one-half to one-third that of non-urban combat. Phase III Conclusion: There was strong evidence of a reduction in the advance rates in urban terrain in the PTO data. However, given that this was a single extreme case, then TDI still stands by its original conclusion that the average advance rate in urban combat should be about one-half to one-third that of non-urban combat/
  4. Overall, there is little evidence that the presence of urban terrain results in a higher linear density of troops, although the data does seem to trend in that direction. Phase III Conclusion: The PTO data shows the highest densities found in the data sets for all three phases of this study. However, it does not appear that the urban density in the PTO was significantly higher than the non-urban density. So it remains difficult to tell whether or not the higher density was a result of the urban terrain or was simply a consequence of the doctrine adopted to meet the requirements found in the Pacific Theater.
  5. Overall, it appears that the loss of armor in urban terrain is the same as or less than that found in non-urban terrain, and in some cases is significantly lower. Phase III Conclusion: This conclusion was further supported.
  6. Urban combat did not significantly influence the Force Ratio required to achieve success or effectively conduct combat operations. Phase III Conclusion: This conclusion was further supported.
  7. Nothing could be determined from an analysis of the data regarding the Duration of Combat (Time) in urban versus non-urban terrain. Phase III Conclusion: Nothing could be determined from an analysis of the data regarding the Duration of Combat (Time) in urban versus non-urban terrain.

So, in Phase I we compared 46 urban and conurban engagements in the ETO to 91 non-urban engagements. In Phase II, we compared 51 urban and conurban engagements in an around Kharkov to 49 non-urban Kursk engagements. On Phase III, from Manila we compared 53 urban and conurban engagements to 41 non-urban engagements mostly from Iwo Jima, Okinawa and Manila. The next blog post on urban warfare will discuss our post-WWII data.

P.S. The picture is an aerial view of the destroyed walled city of Intramuros taken on May 1945

Should The Marines Take Responsibility For Counterinsurgency?

United States Marines in Nacaragua with the captured flag of Augusto César Sandino, 1932. [Wikipedia]

Sydney J. Freedberg, Jr recently reported in Breaking Defense that the Senate Armed Services Committee (SASC), led by chairman Senator John McCain, has asked Defense Secretary James Mattis to report on progress toward preparing the U.S. armed services to carry out the recently published National Defense Strategy oriented toward potential Great Power conflict.

Among a series of questions that challenge existing service roles and missions, Freedberg reported that the SASC wants to know if responsibility for carrying out “low-intensity missions,” such as counterinsurgency, should be the primary responsibility of one service:

Make the Marines a counterinsurgency force? The Senate starts by asking whether the military “would benefit from having one Armed Force dedicated primarily to low-intensity missions, thereby enabling the other Armed Forces to focus more exclusively on advanced peer competitors.” It quickly becomes clear that “one Armed Force” means “the Marines.” The bill questions the Army’s new Security Force Assistance Brigades (SFABs) and suggest shifting that role to the Marines. It also questions the survivability of Navy-Marine flotillas in the face of long-range sensors and precision missiles — so-called Anti-Access/Area Denial (A2/AD) systems — and asked whether the Marines’ core mission, “amphibious forced entry operations,” should even “remain an enduring mission for the joint force” given the difficulties. It suggests replacing large-deck amphibious ships, which carry both Marine aircraft and landing forces, with small aircraft carriers that could carry “larger numbers of more diverse strike aircraft” (but not amphibious vehicles or landing craft). Separate provisions of the bill restrict spending on the current Amphibious Assault Vehicle (Sec. 221) and the future Amphibious Combat Vehicle (Sec. 128) until the Pentagon addresses the viability of amphibious landings.

This proposed change would drastically shift the U.S. Marine Corps’ existing role and missions, something that will inevitably generate political and institutional resistance. Deemphasizing the ability to execute amphibious forced entry operations would be both a difficult strategic choice and an unpalatable political decision to fundamentally alter the Marine Corps’ institutional identity. Amphibious warfare has defined the Marines since the 1920s. It would, however, be a concession to the reality that technological change is driving the evolving character of warfare.

Perhaps This Is Not A Crazy Idea After All

The Marine Corps also has a long history with so-called “small wars”: contingency operations and counterinsurgencies. Tasking the Marines as the proponents for low-intensity conflict would help alleviate one of the basic conundrums facing U.S. land power: the U.S. Army’s inability to optimize its force structure due to the strategic need to be prepared to wage both low-intensity conflict and conventional combined arms warfare against peer or near peer adversaries. The capabilities needed for waging each type of conflict are diverging, and continuing to field a general purpose force is running an increasing risk of creating an Army dangerously ill-suited for either. Giving the Marine Corps responsibility for low-intensity conflict would permit the Army to optimize most of its force structure for combined arms warfare, which poses the most significant threat to American national security (even if it less likely than potential future low-intensity conflicts).

Making the Marines the lead for low-intensity conflict would also play to another bulwark of its institutional identity, as the world’s premier light infantry force (“Every Marine is a rifleman”). Even as light infantry becomes increasingly vulnerable on modern battlefields dominated by the lethality of long-range precision firepower, its importance for providing mass in irregular warfare remains undiminished. Technology has yet to solve the need for large numbers of “boots on the ground” in counterinsurgency.

The crucial role of manpower in counterinsurgency makes it somewhat short-sighted to follow through with the SASC’s suggestions to eliminate the Army’s new Security Force Assistance Brigades (SFABs) and to reorient Special Operations Forces (SOF) toward support for high-intensity conflict. As recent, so-called “hybrid warfare” conflicts in Lebanon and the Ukraine have demonstrated, future battlefields will likely involve a mix of combined arms and low-intensity warfare. It would be risky to assume that Marine Corps’ light infantry, as capable as they are, could tackle all of these challenges alone.

Giving the Marines responsibility for low-intensity conflict would not likely require a drastic change in force structure. Marines could continue to emphasize sea mobility and littoral warfare in circumstances other than forced entry. Giving up the existing large-deck amphibious landing ships would be a tough concession, admittedly, one that would likely reduce the Marines’ effectiveness in responding to contingencies.

It is not likely that a change as big as this will be possible without a protracted political and institutional fight. But fresh thinking and drastic changes in the U.S.’s approach to warfare are going to be necessary to effectively address both near and long-term strategic challenges.

Senate Armed Service Committee Proposes Far-Reaching Changes To U.S. Military

Senate Armed Services Committee members (L-R) Sen. James Inhofe (R-OK), Chairman John McCain (R-AZ) and ranking member Sen. Jack Reed (R-RI) listen to testimony in the Dirksen Senate Office Building on Capitol Hill July 11, 2017 in Washington, D.C. [CREDIT: Chip Somodevilla—Getty Images]

In an article in Breaking Defense last week, Sydney J. Freedberg, Jr. pointed out that the Senate Armed Services Committee (SASC) has requested that Secretary of Defense James Mattis report back by 1 February 2019 on what amounts to “the most sweeping reevaluation of the military in 30 years, with tough questions for all four armed services but especially the Marine Corps.”

Freedberg identified SASC chairman Senator John McCain as the motivating element behind the report, which is part of the draft 2019 National Defense Authorization Act. It emphasizes the initiative to reorient the U.S. military away from its nearly two-decade long focus on counterinsurgency and counterterrorism to prioritizing preparation for potential future Great Power conflict, as outlined in Mattis’s recently published National Defense Strategy. McCain sees this shift taking place far too slowly according to Freedberg, who hints that Mattis shares this concern.

While the SASC request addresses some technological issues, its real focus is on redefining the priorities, missions, and force structures of the armed forces (including special operations forces) in the context of the National Defense Strategy.

The changes it seeks are drastic. According to Freedberg, among the difficult questions it poses are:

  • Make the Marines a counterinsurgency force? [This would greatly help alleviate the U.S. Army’s current strategic conundrum]
  • Make the Army heavier, with fewer helicopters?
  • Refocus Special Operations against Russia and China?
  • Rely less on stealth aircraft and more on drones?

Each of these questions relates directly to trends associated with the multi-domain battle and operations concepts the U.S. armed services are currently jointly developing in response to threats posed by Russian, Chinese, and Iranian military advances.

It is clear that the SASC believes that difficult choices with far-reaching consequences are needed to adequately prepare to meet these challenges. The armed services have been historically resistant to changes involving trade-offs, however, especially ones that touch on service budgets and roles and missions. It seems likely that more than a report will be needed to push through changes deemed necessary by the Senate Armed Services Committee chairman and the Secretary of Defense.

Read more of Freedberg’s article here.

The draft 2019 National Defense Authorization Act can be found here, and the SASC questions can be found in Section 1041 beginning on page 478.

Measuring the Effects of Combat in Cities, Phase II – part 2

There was actually supposed to be a part 2 to this Phase II contract, which was analysis of urban combat at the army-level based upon 50 operations, of which a half-dozen would include significant urban terrain. This effort was not funded.

On the other hand, the quantitative analysis of battles of Kharkov only took up the first 41 pages of the report. A significant part of the rest of the report was a more detailed analysis and case study of the three fights over Kharkov in February, March and August of 1943. Kharkov was a large city, according to the January 1939 census, it has a population of 1,344,200, although a Soviet-era encyclopedia gives the pre-war population as 840,000. We never were able to figure out why there was a discrepancy. The whole area was populated with many villages. The January 1939 gives Kharkov Oblast (region) a population of 1,209,496. This is in addition to the city, so the region had a total population of 2,552,686. Soviet-era sources state that when the city was liberated in August 1943, the remaining population was only 190,000. Kharkov was a much larger city than any of the others ones covered in Phase I effort (except for Paris, but the liberation of that city was hardly a major urban battle).

The report then does a day-by-day review of the urban fighting in Kharkov. Doing a book or two on the battles of Kharkov is on my short list of books to write, as I have already done a lot of the research. We do have daily logistical expenditures of the SS Panzer Corps for February and March (tons of ammo fired, gasoline used and diesel used). In March when the SS Panzer Corps re-took Kharkov, we noted that the daily average for the four days of urban combat from 12 to 15 March was 97.25 tons of ammunition, 92 cubic meters of gasoline and 10 cubic meters of diesel. For the previous five days (7-11 March) the daily average was 93.20 tons of ammunition, 145 cubic meters of gasoline and 9 cubic meters of diesel. Thus it does not produce a lot of support for the idea that–as has sometimes been expressed (for example in RAND’s earlier reports on the subject)–that ammunition and other supplies will be consumed at a higher rate in urban operations.

We do observe from the three battles of Kharkov that (page 95):

There is no question that the most important lesson found in the three battles of Kharkov is that one should just bypass cities rather than attack them. The Phase I study also points out that the attacker is usually aware that faster progress can be made outside the urban terrain, and that the tendency is to weight one or both flanks and not bother to attack the city until it is enveloped. This is indeed what happened in two of the three cases at Kharkov and was also the order given by the Fourth Panzer Army that was violated by the SS Panzer Corps in March.

One must also note that since this study began the United States invaded Iraq and conducted operations in some major urban areas, albeit against somewhat desultory and ineffective opposition. In the southern part of Iraq the two major port cities Umm Qasar and Basra were first enveloped before any forces were sent in to clear them. In the case of Baghdad, it could have been enveloped if sufficient forces were available. As it was, it was not seriously defended. The recent operations in Iraq again confirmed that observations made in the two phases of this study.

P.S. The picture is of Kharkov in 1942, when it was under German occupation.