Tag Third Offset Strategy

“Quantity Has A Quality All Its Own”: How Robot Swarms Might Change Future Combat

Humans vs. machines in the film Matrix Revolutions (2003) [Screencap by The Matrix Wiki]

Yesterday, Paul Scharre, director of the Technology and National Security Program at the Center for a New American Security, and prolific writer on the future of robotics and artificial intelligence, posted a fascinating argument on Twitter regarding swarms and mass in future combat.

His thread was in response to an article by Shmuel Shmuel posted on War on the Rocks, which made the case that the same computer processing technology enabling robotic vehicles combined with old fashioned kinetic weapons (i.e. anti-aircraft guns) offered a cost-effective solution to swarms.

Scharre agreed that robotic drones are indeed vulnerable to such countermeasures, but made this point in response:

He then went to contend that robotic swarms offer the potential to reestablish the role of mass in future combat. Mass, either in terms of numbers of combatants or volume of firepower, has played a decisive role in most wars. As the aphorism goes, usually credited to Josef Stalin, “mass has a quality all of its own.”

Scharre observed that the United States went in a different direction in its post-World War II approach to warfare, adopting instead “offset” strategies that sought to leverage superior technology to balance against the mass militaries of the Communist bloc.

While effective during the Cold War, Scharre concurs with the arguments that offset strategies are becoming far too expensive and may ultimately become self-defeating.

In order to avoid this fate, Scharre contends that

The entire thread is well worth reading.

Trevor Dupuy would have agreed with much of what Scharre’s asserts. He identified the relationship between increasing weapon lethality and battlefield dispersion that goes back to the 17th century. Dupuy believed that the primary factor driving this relationship was the human response to fear in a lethal environment, with soldiers dispersing in depth and frontage on battlefields in order to survive weapons of ever increasing destructiveness.

TDI Friday Read: Lethality, Dispersion, And Mass On Future Battlefields

Robots might very well change that equation. Whether autonomous or “human in the loop,” robotic swarms do not feel fear and are inherently expendable. Cheaply produced robots might very well provide sufficient augmentation to human combat units to restore the primacy of mass in future warfare.

Drones: The People’s Weapon?

The DJI Matrice 600 commercial drone for professional aerial photography. Available for $4,600, a pair of these drones were allegedly used in an assassination attempt on Venezuelan President Nicolás Maduro in August 2018. [Wired]

Last week, the Russian Ministry of Defense claimed that its military air defense assets had shot down 45 drones in attempted attacks on Khmeimim Air Base, the main Russian military installation in Syria. The frequency of these attacks were increasing since the first one in January, according to Major General Igor Konashenkov. Five drones had been downed in the three days preceding the news conference.

Konashenkov asserted that although the drones appeared technologically primitive, they were actually quite sophisticated, with a range of up to 100 kilometers (60 miles). While the drones were purportedly to be piloted by Syrian rebels from Idlib Provence, the Russians have implied that they required outside assistance to assemble them.

The use of commercial off-the shelf (COTS) or modified off-the-shelf (MOTS) aerial drones by non-state actors for actions ranging from precision bombing attacks on combat troops, to terrorism, to surveillance of law enforcement, appears to be gaining in popularity.

Earlier this month, a pair of commercial drones armed with explosives were used in an alleged assassination attempt on Venezuelan President Nicolás Maduro. Daesh fighters in Syria and Iraq have been using drones for reconnaissance and to drop explosives and bombs on opposition forces.

According to Kathy Gilsinan in The Atlantic,

In 2015, Reuters reported that a protester flew “a drone carrying radioactive sand from the Fukushima nuclear disaster onto the prime minister’s office, though the amount of radiation was minimal.” Mexican cartels have used drones to smuggle drugs and, in one instance, to land disabled grenades on a local police chief’s property. Last summer, a drone delivered an active grenade to an ammunition dump in Ukraine, which Kyle Mizokami of Popular Mechanics reported caused a billion dollars’ worth of damage.

Patrick Turner reported for Defense One that a criminal gang employed drones to harass an FBI hostage rescue team observing an unfolding situation outside a large U.S. city in 2017.

The U.S. Defense Department has been aware for some time of the potential effectiveness of drones, particularly the specter of massed drone “swarm” attacks. In turn, the national security community and the defense industry have turned their attention to potential countermeasures.

As Joseph Trevithick reported in The Drive, the Russians have been successful thus far in thwarting drone attacks in Syria using air defense radars, Pantsir-S1 short-range air defense systems, and electronic warfare systems. These attacks have not involved more than a handful of drones at a time, however. The initial Syrian rebel drone attack on Khmeimim Air Base in January 2018 involved 10 drones carrying 10 bomblets each.

The ubiquity of commercial drones also raises the possibility of attacks on non-military targets unprotected by air defense networks. Is it possible to defend every potential target? Perhaps not, but Jospeh Hanacek points out in War on the Rocks that there are ways to counter or mitigate the risk of drone attacks that do not involve sophisticated and expensive defenses. Among his simple suggestions are using shotguns for point defense against small and fragile drones, improving communications among security forces, and complicating the targeting problem for would-be attackers. Perhaps the best defense against drones is merely to avoid overthinking the problem.

Is The End Of Stealth Neigh?

Lockheed Martin F-22 Raptor [Creative Commons]

Michael Peck made an interesting catch over at The National Interest. The Defense Advanced Research Projects Agency (DARPA) is soliciting input on potentially disruptive technologies for future warfare. With regard to air warfare, the solicitation baldy states, “Platform stealth may be approaching physical limits.” This led Peck to ask “Did the Pentagon just admit that stealth technology may not work anymore?

A couple of years ago, a media report that the Chinese had claimed a technological breakthrough in stealth-busting quantum radar capabilities led me to muse about the possible repercussions on U.S. military capabilities. This was during the height of the technology-rooted Third Offset Strategy mania. It seemed to me at the time that concentrating on technological solutions to the U.S.’s strategic challenges might not be the wisest course of action.

The notion that stealth might be a wasting asset seemed somewhat far-fetched when I wrote that, but it appears to have become a much more serious concern. As the DARPA solicitation states, “Our acquisition system is finding it difficult to respond on relevant timescales to adversary progress, which has made the search for next generation capabilities at once more urgent and more futile.” (p. 5)

Er, yikes.

TDI Friday Read: Lethality, Dispersion, And Mass On Future Battlefields

Armies have historically responded to the increasing lethality of weapons by dispersing mass in frontage and depth on the battlefield. Will combat see a new period of adjustment over the next 50 years like the previous half-century, where dispersion continues to shift in direct proportion to increased weapon range and precision, or will there be a significant change in the character of warfare?

One point of departure for such an inquiry could be the work of TDI President Chris Lawrence, who looked into the nature of historical rates of dispersion in combat from 1600 to 1991.

The Effects Of Dispersion On Combat

As he explained,

I am focusing on this because l really want to come up with some means of measuring the effects of a “revolution in warfare.” The last 400 years of human history have given us more revolutionary inventions impacting war than we can reasonably expect to see in the next 100 years. In particular, I would like to measure the impact of increased weapon accuracy, improved intelligence, and improved C2 on combat.

His tentative conclusions were:

  1. Dispersion has been relatively constant and driven by factors other than firepower from 1600-1815.
  2. Since the Napoleonic Wars, units have increasingly dispersed (found ways to reduce their chance to be hit) in response to increased lethality of weapons.
  3. As a result of this increased dispersion, casualties in a given space have declined.
  4. The ratio of this decline in casualties over area have been roughly proportional to the strength over an area from 1600 through WWI. Starting with WWII, it appears that people have dispersed faster than weapons lethality, and this trend has continued.
  5. In effect, people dispersed in direct relation to increased firepower from 1815 through 1920, and then after that time dispersed faster than the increase in lethality.
  6. It appears that since WWII, people have gone back to dispersing (reducing their chance to be hit) at the same rate that firepower is increasing.
  7. Effectively, there are four patterns of casualties in modem war:

Period 1 (1600 – 1815): Period of Stability

  • Short battles
  • Short frontages
  • High attrition per day
  • Constant dispersion
  • Dispersion decreasing slightly after late 1700s
  • Attrition decreasing slightly after mid-1700s.

Period 2 (1816 – 1905): Period of Adjustment

  • Longer battles
  • Longer frontages
  • Lower attrition per day
  • Increasing dispersion
  • Dispersion increasing slightly faster than lethality

Period 3 (1912 – 1920): Period of Transition

  • Long battles
  • Continuous frontages
  • Lower attrition per day
  • Increasing dispersion
  • Relative lethality per kilometer similar to past, but lower
  • Dispersion increasing slightly faster than lethality

Period 4 (1937 – present): Modern Warfare

  • Long battles
  • Continuous frontages
  • Low attrition per day
  • High dispersion (perhaps constant?)
  • Relatively lethality per kilometer much lower than the past
  • Dispersion increased much faster than lethality going into the period.
  • Dispersion increased at the same rate as lethality within the period.

Chris based his study on previous work done by Trevor Dupuy and his associates, which established a pattern in historical combat between lethality, dispersion, and battlefield casualty rates.

Trevor Dupuy and Historical Trends Related to Weapon Lethality

What Is The Relationship Between Rate of Fire and Military Effectiveness?

Human Factors In Warfare: Dispersion

There is no way to accurately predict the future relationship between weapon lethality and dispersion on the battlefield, but we should question whether or not current conception of combat reflect consideration of the historical trends.

Attrition In Future Land Combat

The Principle Of Mass On The Future Battlefield

SINKEX

U.S.S. Racine, serving as a target ship for a sinking exercise on 12 July 2018. [YouTube Screencap/The Drive]

The U.S. Navy has uploaded video of a recent sinking exercise (SINKEX) conducted during the 2018 Rim Of The Pacific (RIMPAC) exercises, hosted bi-annually by the U.S. Pacific Fleet based in Honolulu, Hawaii. As detailed by Tyler Rogoway in The Drive, the target of the SINKEX on 12 July 2018 was the U.S.S. Racine, a Newport class Landing Ship-Tank amphibious ship decommissioned 25 years ago.

As dramatic as the images are, the interesting thing about this demonstration was that it included a variety of land-based weapons firing across domains to strike a naval target. The U.S. Army successfully fired a version of the Naval Strike Missile that it is interested in acquiring, as well as a half-dozen High-Mobility Artillery Rocket System [HIMARS] rounds.Japanese troops fired four Type 12 land-based anti-ship missiles at the Racine as well. For good measure, an Australian P-8 Poseidon also hit the target with an air-launched AGM-84 Harpoon.

The coup de gras was provided by a Mk-48 torpedo launched from the Los Angeles class nuclear fast attack submarine USS Olympia, which broke the Racine‘s back and finally sank it an hour later.

Recent Developments In “Game Changing” Precision Fires Technology

Nammo’s new 155mm Solid Fuel Ramjet projectile [The Drive]

From the “Build A Better Mousetrap” files come a couple of new developments in precision fires technology. The U.S. Army’s current top modernization priority is improving its long-range precision fires capabilities.

Joseph Trevithick reports in The Drive that Nammo, a Norwegian/Finnish aerospace and defense company, recently revealed that it is developing a solid-fueled, ramjet-powered, precision projectile capable of being fired from the ubiquitous 155mm howitzer. The projectile, which is scheduled for live-fire testing in 2019 or 2020, will have a range of more than 60 miles.

The Army’s current self-propelled and towed 155mm howitzers have a range of 12 miles using standard ammunition, and up to 20 miles with rocket-powered munitions. Nammo’s ramjet projectile could effectively double that, but the Army is also looking into developing a new 155mm howitzer with a longer barrel that could fully exploit the capabilities of Nammo’s ramjet shell and other new long-range precision munitions under development.

Anna Ahronheim has a story in The Jerusalem Post about a new weapon developed by the Israeli Rafael Advanced Defense Systems Ltd. called the FireFly. FireFly is a small, three-kilogram, loitering munition designed for use by light ground maneuver forces to deliver precision fires against enemy forces in cover. Similar to a drone, FireFly can hover for up to 15 minutes before delivery.

In a statement, Rafael claimed that “Firefly will essentially eliminate the value of cover and with it, the necessity of long-drawn-out firefights. It will also make obsolete the old infantry tactic of firing and maneuvering to eliminate an enemy hiding behind cover.”

Nammo and Rafael have very high hopes for their wares:

“This [155mm Solid Fuel Ramjet] could be a game-changer for artillery,” according to Thomas Danbolt, Vice President of Nammo’s Large Caliber Ammunitions division.

“The impact of FireFly on the infantry is revolutionary, fundamentally changing small infantry tactics,” Rafael has asserted.

Expansive claims for the impact of new technology are not new, of course. Oribtal ATK touted its XM25 Counter Defilade Target Engagement (CDTE) precision-guided grenade launcher along familiar lines, claiming that “The introduction of the XM25 is akin to other revolutionary systems such as the machine gun, the airplane and the tank, all of which changed battlefield tactics.”

Similar in battlefield effect to the FireFly, the Army cancelled its contract for the XM25 in 2017 after disappointing results in field tests.

UPDATE: For clarity’s sake, let me re-up my contrarian take:

Will This Weapon Change Infantry Warfare Forever? Maybe, But Probably Not

Should The Marines Take Responsibility For Counterinsurgency?

United States Marines in Nacaragua with the captured flag of Augusto César Sandino, 1932. [Wikipedia]

Sydney J. Freedberg, Jr recently reported in Breaking Defense that the Senate Armed Services Committee (SASC), led by chairman Senator John McCain, has asked Defense Secretary James Mattis to report on progress toward preparing the U.S. armed services to carry out the recently published National Defense Strategy oriented toward potential Great Power conflict.

Among a series of questions that challenge existing service roles and missions, Freedberg reported that the SASC wants to know if responsibility for carrying out “low-intensity missions,” such as counterinsurgency, should be the primary responsibility of one service:

Make the Marines a counterinsurgency force? The Senate starts by asking whether the military “would benefit from having one Armed Force dedicated primarily to low-intensity missions, thereby enabling the other Armed Forces to focus more exclusively on advanced peer competitors.” It quickly becomes clear that “one Armed Force” means “the Marines.” The bill questions the Army’s new Security Force Assistance Brigades (SFABs) and suggest shifting that role to the Marines. It also questions the survivability of Navy-Marine flotillas in the face of long-range sensors and precision missiles — so-called Anti-Access/Area Denial (A2/AD) systems — and asked whether the Marines’ core mission, “amphibious forced entry operations,” should even “remain an enduring mission for the joint force” given the difficulties. It suggests replacing large-deck amphibious ships, which carry both Marine aircraft and landing forces, with small aircraft carriers that could carry “larger numbers of more diverse strike aircraft” (but not amphibious vehicles or landing craft). Separate provisions of the bill restrict spending on the current Amphibious Assault Vehicle (Sec. 221) and the future Amphibious Combat Vehicle (Sec. 128) until the Pentagon addresses the viability of amphibious landings.

This proposed change would drastically shift the U.S. Marine Corps’ existing role and missions, something that will inevitably generate political and institutional resistance. Deemphasizing the ability to execute amphibious forced entry operations would be both a difficult strategic choice and an unpalatable political decision to fundamentally alter the Marine Corps’ institutional identity. Amphibious warfare has defined the Marines since the 1920s. It would, however, be a concession to the reality that technological change is driving the evolving character of warfare.

Perhaps This Is Not A Crazy Idea After All

The Marine Corps also has a long history with so-called “small wars”: contingency operations and counterinsurgencies. Tasking the Marines as the proponents for low-intensity conflict would help alleviate one of the basic conundrums facing U.S. land power: the U.S. Army’s inability to optimize its force structure due to the strategic need to be prepared to wage both low-intensity conflict and conventional combined arms warfare against peer or near peer adversaries. The capabilities needed for waging each type of conflict are diverging, and continuing to field a general purpose force is running an increasing risk of creating an Army dangerously ill-suited for either. Giving the Marine Corps responsibility for low-intensity conflict would permit the Army to optimize most of its force structure for combined arms warfare, which poses the most significant threat to American national security (even if it less likely than potential future low-intensity conflicts).

Making the Marines the lead for low-intensity conflict would also play to another bulwark of its institutional identity, as the world’s premier light infantry force (“Every Marine is a rifleman”). Even as light infantry becomes increasingly vulnerable on modern battlefields dominated by the lethality of long-range precision firepower, its importance for providing mass in irregular warfare remains undiminished. Technology has yet to solve the need for large numbers of “boots on the ground” in counterinsurgency.

The crucial role of manpower in counterinsurgency makes it somewhat short-sighted to follow through with the SASC’s suggestions to eliminate the Army’s new Security Force Assistance Brigades (SFABs) and to reorient Special Operations Forces (SOF) toward support for high-intensity conflict. As recent, so-called “hybrid warfare” conflicts in Lebanon and the Ukraine have demonstrated, future battlefields will likely involve a mix of combined arms and low-intensity warfare. It would be risky to assume that Marine Corps’ light infantry, as capable as they are, could tackle all of these challenges alone.

Giving the Marines responsibility for low-intensity conflict would not likely require a drastic change in force structure. Marines could continue to emphasize sea mobility and littoral warfare in circumstances other than forced entry. Giving up the existing large-deck amphibious landing ships would be a tough concession, admittedly, one that would likely reduce the Marines’ effectiveness in responding to contingencies.

It is not likely that a change as big as this will be possible without a protracted political and institutional fight. But fresh thinking and drastic changes in the U.S.’s approach to warfare are going to be necessary to effectively address both near and long-term strategic challenges.

Senate Armed Service Committee Proposes Far-Reaching Changes To U.S. Military

Senate Armed Services Committee members (L-R) Sen. James Inhofe (R-OK), Chairman John McCain (R-AZ) and ranking member Sen. Jack Reed (R-RI) listen to testimony in the Dirksen Senate Office Building on Capitol Hill July 11, 2017 in Washington, D.C. [CREDIT: Chip Somodevilla—Getty Images]

In an article in Breaking Defense last week, Sydney J. Freedberg, Jr. pointed out that the Senate Armed Services Committee (SASC) has requested that Secretary of Defense James Mattis report back by 1 February 2019 on what amounts to “the most sweeping reevaluation of the military in 30 years, with tough questions for all four armed services but especially the Marine Corps.”

Freedberg identified SASC chairman Senator John McCain as the motivating element behind the report, which is part of the draft 2019 National Defense Authorization Act. It emphasizes the initiative to reorient the U.S. military away from its nearly two-decade long focus on counterinsurgency and counterterrorism to prioritizing preparation for potential future Great Power conflict, as outlined in Mattis’s recently published National Defense Strategy. McCain sees this shift taking place far too slowly according to Freedberg, who hints that Mattis shares this concern.

While the SASC request addresses some technological issues, its real focus is on redefining the priorities, missions, and force structures of the armed forces (including special operations forces) in the context of the National Defense Strategy.

The changes it seeks are drastic. According to Freedberg, among the difficult questions it poses are:

  • Make the Marines a counterinsurgency force? [This would greatly help alleviate the U.S. Army’s current strategic conundrum]
  • Make the Army heavier, with fewer helicopters?
  • Refocus Special Operations against Russia and China?
  • Rely less on stealth aircraft and more on drones?

Each of these questions relates directly to trends associated with the multi-domain battle and operations concepts the U.S. armed services are currently jointly developing in response to threats posed by Russian, Chinese, and Iranian military advances.

It is clear that the SASC believes that difficult choices with far-reaching consequences are needed to adequately prepare to meet these challenges. The armed services have been historically resistant to changes involving trade-offs, however, especially ones that touch on service budgets and roles and missions. It seems likely that more than a report will be needed to push through changes deemed necessary by the Senate Armed Services Committee chairman and the Secretary of Defense.

Read more of Freedberg’s article here.

The draft 2019 National Defense Authorization Act can be found here, and the SASC questions can be found in Section 1041 beginning on page 478.

Air Combat And Technology

Any model of air combat needs to address the effect of weapons on the opposing forces.  In the Dupuy Air Combat Model (DACM), this was rifled bullets fired from machine guns, as well as small caliber cannon in the 20-30 millimeter (mm) class.  Such was the state of air combat in World War II.  This page is an excellent, in-depth analysis of the fighter guns and cannon.  Of course, technology has effects beyond firepower.  One of the most notable technologies to go into active use during World War II was radar, contributing to the effectiveness of the Royal Air Force (RAF), successfully holding off the Wehrmacht’s Luftwaffe in the Battle of Britain.

Since that time, driven by “great power competition”, technology continues to advance the art of warfare in the air.  This happened in several notable stages during the Cold War, and was on display in subsequent contemporary conflicts when client or proxy states fought on behalf of the great powers.  Examples include well-known conflicts, such as the Korean and Vietnam conflicts, but also the conflicts between the Arabs and Israelis.  In the Korean War, archives now illustrate than Russian pilots secretly flew alongside North Korean and Chinese pilots against the allied forces.

Stages in technology are often characterized by generation.  Many of the features that are associated with the generations are driven by the Cold War arms race, and the back and forth development cycles and innovation cycles by the aircraft designers.  This was evident in comments by Aviation Week’s Bill Sweetman, remarking that the Jas-39 Grippen is actually a sixth generation fighter, based upon the alternative focus on maintainability, operability from short runways / austere airbases (or roadways!), the focus on cost reduction, but most importantly, software: “The reason that the JAS 39E may earn a Gen 6 tag is that it has been designed with these issues in mind. Software comes first: The new hardware runs Mission System 21 software, the latest roughly biennial release in the series that started with the JAS 39A/B.”

Upon close inspection of the DACM parameters, we can observe a few important data elements and metadata definitions: avionics (aka software & hardware), and sensor performance.  Those two are about data and information.  A concise method to assign values to these parameters is needed.  The U.S. Air Force (USAF) Air Combat Command (ACC) has used the generation of fighters as a proxy for this in the past, at least at a notional level:

[Source: 5th Generation Fighters, Lt Gen Hawk Carlisle, USAF ACC]

The Fleet Series game that has been reviewed in previous posts has a different method.  The Air-to-Air Combat Resolution Table does not seem to resonate well, as the damage effects are imposed against either one side or the other.  This does not jive with the stated concerns of the USAF, which has been worried about an exchange in which both Red and Blue forces are destroyed or eliminated in a mutual fashion, with a more or less one-for-one exchange ratio.

The Beyond Visual Range (BVR) version, named Long Range Air-to-Air (LRAA) combat in Asian Fleet, is a better model of this, in which each side rolls a die to determine the effect of long range missiles, and each side may take losses on non-stealthy units, as the stealthy units are immune to damage at BVR.

One important factor that the Fleet Series combat process does resolve is a solid determination of which side “holds” the airspace, and this is capable of using other support aircraft, such as AWACS, tankers, reconnaissance, etc.  Part of this determination is the relative morale of the opposing forces.  These effects have been clearly evident in air campaigns such as the strategic bombing campaign on Germany and Japan in the latter portion of World War II.

Dealing with this conundrum, I decided to relax by watching some dogfight videos on YouTube, Dogfights Greatest Air Battles, and this was rather entertaining, it included a series of engagements in aerial combat, taken from the exploits of American aces over the course of major wars:

  1. Eddie Rickenbacker, flying a Spad 13 in World War I,
  2. Clarence Emil “Bud” Anderson, flying a P-51B “Old Crow” in European skies during World War II, flying 67 missions in P-51Ds, 35 missions in F-80s and 121 missions in F-86s. He wrote “No Guts, No Glory,” a how to manual with lots of graphics of named maneuvers like the “Scissors.”
  3. Frederick Corbin “Boots” Blesse, flying a F-86 Sabre in “MiG Alley” in North Korea close to the Chinese border,
  4. Several engagements and interviews of aces from the Vietnam War:
    1. Steve Ritchie, who said “Surprise is a key element.” Previously discussed.
    2. Robin Olds – a triple ace in both WWII (P-38 and P-51) and Vietnam (F-4), and the mastermind of Operation Bolo, a fantastic application of deception.
    3. Randy “Duke” Cunningham and William P “Irish” Discol, flying an F-4 Phantom, “Showtime 100”, and up against North Vietnamese MiG-17s.

An interesting paraphrase by Cunningham of Manfred von Richthofen, the Red Baron’s statement: “When he sees the enemy, he attacks and kills, everything else is rubbish.”  What Richthofen said (according to skygod.com), was “The duty of the fighter pilot is to patrol his area of the sky, and shoot down any enemy fighters in that area. Anything else is rubbish.” Richtofen would not let members of his Staffel strafe troops in the trenches.

The list above is a great reference, and it got me to consider an alternative form of generation, including the earlier wars, and the experiences gained in those wars.  Indeed, we can press on in time to include the combat performance of the US and Allied militaries in the first Gulf War, 1990, as previously discussed.

There was a reference to the principles of aerial combat, such as the Dicta Boelcke:

  1. Secure the benefits of aerial combat (speed, altitude, numerical superiority, position) before attacking. Always attack from the sun.
  2. If you start the attack, bring it to an end.
  3. Fire the machine gun up close and only if you are sure to target your opponent.
  4. Do not lose sight of the enemy.
  5. In any form of attack, an approach to the opponent from behind is required.
  6. If the enemy attacks you in a dive, do not try to dodge the attack, but turn to the attacker.
  7. If you are above the enemy lines, always keep your own retreat in mind.
  8. For squadrons: In principle attack only in groups of four to six. If the fight breaks up in noisy single battles, make sure that not many comrades pounce on an opponent.

Appendix A – my own attempt to classify the generations of jet aircraft, in an attempt to rationalize the numerous schemes … until I decided that it was a fool’s errand:

  • Generation Zero:
    • World War II, 1948 Arab Israeli conflict
    • Blue: Spitfire, P-51 Mustang,
    • Red: Bf-109, FW-190, Mitsubishi Zero/George
    • Propeller engines, machine guns & cannons
  • First Generation:
    • Korean War, China & Taiwan conflicts
    • Blue: F-86 Sabre,
    • Red: MiG-15, Me-262?
    • Jet engines, swept wings, machine guns & cannons, early air-to-air missiles
  • Second Generation –
    • 1967 and Cuban Missile Crisis
    • Blue: F-100, F-102, F-104, F-5, F-8
    • Grey: Mirage III, Mirage F1
    • Red: MiG-19, MiG-21
    • Multi-mach speeds, improved air-to-air missiles, but largely within-visual range (WVR), early radar warning receivers (RWR), early countermeasures.
  • Third Generation:
    • 1973 Arab Israeli Wars, Vietnam War
    • Blue: F-4 Phantom, F-111 Ardvark, F-106?
    • Grey: Mirage III
    • Red: MiG-23, MiG-25, Su-15
    • Look-down/Shoot-down capability, radar-guided missiles, Beyond Visual Range (BVR), Identification Friend or Foe (IFF), all-aspect infrared missiles.
  • Fourth Generation:
    • 1980’s Cold War, 1990 Gulf War, 1982 Lebanon, 1980-88 Iran-Iraq War
    • Blue: F-15 Eagle, F-16 Viper, F-14 Tomcat, F/A-18 Hornet
    • Grey: Mirage 2000
    • Red: MiG-29, MiG-31, Su-27/30
  • Fourth Plus Generation:
    • 2003 Gulf War, 2011 Libiya
    • Blue: F/A-18E/F Super Hornet, F-15 improved (F-15E, F-15I, F-15SG, F-15SK…)
    • Grey: Eurofighter Typhoon, Rafale
    • Red: Su-35S
  • Fifth Generation:
    • Marketing term used by aircraft producers
    • Blue: Adanced Tactical Fighter (ATF) = F-22 Raptor, Joint Strike Fighter (JSF) = F-35 Lightening II
    • Grey: Grippen?
    • Red: PAK-FA Su-57, J-20
  • Sixth Generation – the current frontier
    • Blue: Next Generation Air Dominance (NGAD) program, UAS ?
    • Red: ?
    • Grey: Two seat, Twin tail “drone-herder”?

U.S. Army Invests In Revitalizing Long Range Precision Fires Capabilities

U.S. Marines from the The 11th MEU fire their M777 Lightweight 155mm Howitzer during Exercise Alligator Dagger, Dec. 18, 2016. (U.S. Marine Corps/Lance Cpl. Zachery C. Laning/Military.com)

In 2016, Michael Jacobson and Robert H. Scales amplified a warning that after years of neglect during the counterinsurgency war in Iraq and Afghanistan, the U.S. was falling behind potential adversaries in artillery and long range precision fires capabilities. The U.S. Army had already taken note of the performance of Russian artillery in Ukraine, particularly the strike at Zelenopillya in 2014.

Since then, the U.S. Army and Marine Corps have started working on a new Multi-Domain Battle concept aimed at countering the anti-access/area denial (A2/AD) capabilities of potential foes. In 2017, U.S. Army Chief of Staff General Mark Milley made rapid improvement in long range precision fires capabilities the top priority for the service’s modernization effort. It currently aims to field new field artillery, rocket, and missile weapons capable of striking at distances from 70 to 500 kilometers – double the existing ranges – within five years.

The value of ground-based long-range precision fires has been demonstrated recently by the effectiveness of U.S. artillery support, particularly U.S. Army and Marine Corps 155mm howitzers, for Iraqi security forces in retaking Mosul, Syrian Democratic Forces assaulting Raqaa, and in protection of Syrian Kurds being attacked by Russian mercenaries and Syrian regime forces.

According to Army historian Luke O’Brian, the Fiscal Year 2019 Defense budget includes funds to buy 28,737 XM1156 Precision Guided Kit (PGK) 155mm howitzer munitions, which includes replacements for the 6,269 rounds expended during Operation INHERENT RESOLVE. O’Brian also notes that the Army will also buy 2,162 M982 Excalibur 155mm rounds in 2019 and several hundred each in following years.

In addition, in an effort to reduce the dependence on potentially vulnerable Global Positioning System (GPS) satellite networks for precision fires capabilities, the Army has awarded a contract to BAE Systems to develop Precision Guided Kit-Modernization (PGK-M) rounds with internal navigational capacity.

While the numbers appear large at first glance, data on U.S. artillery expenditures in Operation DESERT STORM and IRAQI FREEDOM (also via Luke O’Brian) shows just how much the volume of long-range fires has changed just since 1991. For the U.S. at least, precision fires have indeed replaced mass fires on the battlefield.