Tag Technology

Dupuy’s Verities: The Effects of Firepower in Combat

A German artillery barrage falling on Allied trenches, probably during the Second Battle of Ypres in 1915, during the First World War. [Wikimedia]

The eleventh of Trevor Dupuy’s Timeless Verities of Combat is:

Firepower kills, disrupts, suppresses, and causes dispersion.

From Understanding War (1987):

It is doubtful if any of the people who are today writing on the effect of technology on warfare would consciously disagree with this statement. Yet, many of them tend to ignore the impact of firepower on dispersion, and as a consequence they have come to believe that the more lethal the firepower, the more deaths, disruption, and suppression it will cause. In fact, as weapons have become more lethal intrinsically, their casualty-causing capability has either declined or remained about the same because of greater dispersion of targets. Personnel and tank loss rates of the 1973 Arab-Israeli War, for example, were quite similar to those of intensive battles of World War II and the casualty rates in both of these wars were less than in World War I. (p. 7)

Research and analysis of real-world historical combat data by Dupuy and TDI has identified at least four distinct combat effects of firepower: infliction of casualties (lethality), disruption, suppression, and dispersion. All of them were found to be heavily influenced—if not determined—by moral (human) factors.

Again, I have written extensively on this blog about Dupuy’s theory about the historical relationship between weapon lethality, dispersion on the battlefield, and historical decline in average daily combat casualty rates. TDI President Chris Lawrence has done further work on the subject as well.

TDI Friday Read: Lethality, Dispersion, And Mass On Future Battlefields

Human Factors In Warfare: Dispersion

Human Factors In Warfare: Suppression

There appears to be a fundamental difference in interpretation of the combat effects of firepower between Dupuy’s emphasis on the primacy of human factors and Defense Department models that account only for the “physics-based” casualty-inflicting capabilities of weapons systems. While U.S. Army combat doctrine accounts for the interaction of firepower and human behavior on the battlefield, it has no clear method for assessing or even fully identifying the effects of such factors on combat outcomes.

Dupuy’s Verities: The Requirements For Successful Defense

A Sherman tank of the U.S. Army 9th Armored Division heads into action against the advancing Germans during the Battle of the Bulge. {Warfare History Network]

The eighth of Trevor Dupuy’s Timeless Verities of Combat is:

Successful defense requires depth and reserves.

From Understanding War (1987):

Successful defense requires depth and reserves. It has been asserted that outnumbered military forces cannot afford to withhold valuable firepower from ongoing defensive operations and keep it idle in reserve posture. History demonstrates that this is specious logic, and that linear defense is disastrously vulnerable. Napoleon’s crossing of the Po in his first campaign in 1796 is perhaps the classic demonstration of the fallacy of linear (or cordon) defense.

The defender may have all of his firepower committed to the anticipated operational area, but the attacker’s advantage in having the initiative can always render much of that defensive firepower useless. Anyone who suggests that modern technology will facilitate the shifting of engaged firepower in battle overlooks three considerations: (a) the attacker can inhibit or prevent such movement by both direct and indirect means, (b) a defender engaged in a fruitless firefight against limited attacks by numerically inferior attackers is neither physically nor psychologically attuned to making lateral movements even if the enemy does not prevent or inhibit it, and (c) withdrawal of forces from the line (even if possible) provides an alert attacker with an opportunity for shifting the thrust of his offensive to the newly created gap in the defenses.

Napoleon recognized that hard-fought combat is usually won by the side committing the last reserves. Marengo, Borodino, and Ligny are typical examples of Napoleonic victories that demonstrated the importance of having resources available to tip the scales. His two greatest defeats, Leipzig and Waterloo, were suffered because his enemies still had reserves after his were all committed. The importance of committing the last reserves was demonstrated with particular poignancy at Antietam in the American Civil War. In World War II there is no better example than that of Kursk. [pp. 5-6]

Dupuy’s observations about the need for depth and reserves for a successful defense take on even greater current salience in light of the probably character of the near-future battlefield. Terrain lost by an unsuccessful defense may be extremely difficult to regain under prevailing circumstances.

The interaction of increasing weapon lethality and the operational and human circumstantial variables of combat continue to drive the long-term trend in dispersion of combat forces in frontage and depth.

Long-range precision firepower, ubiquitous battlefield reconnaissance and surveillance, and the effectiveness of cyber and information operations will make massing of forces and operational maneuver risky affairs.

As during the Cold War, the stability of alliances may depend on a willingness to defend forward in the teeth of effective anti-access/area denial (A2/AD) regimes that will make the strategic and operational deployment of reserves risky as well. The successful suppression of A2/AD networks might court a nuclear response, however.

Finding an effective solution for enabling a successful defense-in-depth in the future will be a task of great difficulty.

TDI Friday Read: Tank Combat at Kursk

Today’s edition of TDI Friday Read is a roundup of posts by TDI President Christopher Lawrence exploring the details of tank combat between German and Soviet forces at the Battle of Kursk in 1943. The prevailing historical interpretation of Kursk is of the Soviets using their material and manpower superiority to blunt and then overwhelm the German offensive. This view is often buttressed by looking at the  ratio of the numbers of tanks destroyed in combat. Chris takes a deeper look at the data, the differences in the ways “destroyed” tanks were counted and reported, and the differing philosophies between the German and Soviet armies regarding damaged tank recovery and repair. This yields a much more nuanced perspective on the character of tank combat at Kursk that does not necessarily align with the prevailing historical interpretations. Historians often discount detailed observational data on combat as irrelevant or too difficult to collect and interpret. We at TDI believe that with history, the devil is always in the details.

Armor Exchange Ratios at Kursk

Armor Exchange Ratios at Kursk, 5 and 6 July 1943

Soviet Tank Repairs at Kursk (part 1 of 2)

Soviet Tank Repairs at Kursk (part 2 of 2)

German Damaged versus Destroyed Tanks at Kursk

Soviet Damaged versus Destroyed Tanks at Kursk

Comparative Tank Exchange Ratios at Kursk

What Multi-Domain Operations Wargames Are You Playing? [Updated]

Source: David A. Shlapak and Michael Johnson. Reinforcing Deterrence on NATO’s Eastern Flank: Wargaming the Defense of the Baltics. Santa Monica, CA: RAND Corporation, 2016.

 

 

 

 

 

 

 

[UPDATE] We had several readers recommend games they have used or would be suitable for simulating Multi-Domain Battle and Operations (MDB/MDO) concepts. These include several classic campaign-level board wargames:

The Next War (SPI, 1976)

NATO: The Next War in Europe (Victory Games, 1983)

For tactical level combat, there is Steel Panthers: Main Battle Tank (SSI/Shrapnel Games, 1996- )

There were also a couple of naval/air oriented games:

Asian Fleet (Kokusai-Tsushin Co., Ltd. (国際通信社) 2007, 2010)

Command: Modern Air Naval Operations (Matrix Games, 2014)

Are there any others folks are using out there?


A Mystics & Statistic reader wants to know what wargames are being used to simulate and explore Multi-Domain Battle and Operations (MDB/MDO) concepts?

There is a lot of MDB/MDO wargaming going on in at all levels in the U.S. Department of Defense. Much of this appears to use existing models, simulations, and wargames, such as the U.S. Army Center for Army Analysis’s unclassified Wargaming Analysis Model (C-WAM).

Chris Lawrence recently looked at C-WAM and found that it uses a lot of traditional board wargaming elements, including methodologies for determining combat results, casualties, and breakpoints that have been found unable to replicate real-world outcomes (aka “The Base of Sand” problem).

C-WAM 1

C-WAM 2

C-WAM 3

C-WAM 4 (Breakpoints)

There is also the wargame used by RAND to look at possible scenarios for a potential Russian invasion of the Baltic States.

Wargaming the Defense of the Baltics

Wargaming at RAND

What other wargames, models, and simulations are there being used out there? Are there any commercial wargames incorporating MDB/MDO elements into their gameplay? What methodologies are being used to portray MDB/MDO effects?

TDI Friday Read: Multi-Domain Battle/Operations Doctrine

With the December 2018 update of the U.S. Army’s Multi-Domain Operations (MDO) concept, this seems like a good time to review the evolution of doctrinal thinking about it. We will start with the event that sparked the Army’s thinking about the subject: the 2014 rocket artillery barrage fired from Russian territory that devastated Ukrainian Army forces near the village of Zelenopillya. From there we will look at the evolution of Army thinking beginning with the initial draft of an operating concept for Multi-Domain Battle (MDB) in 2017. To conclude, we will re-up two articles expressing misgivings over the manner with which these doctrinal concepts are being developed, and the direction they are taking.

The Russian Artillery Strike That Spooked The U.S. Army

Army And Marine Corps Join Forces To Define Multi-Domain Battle Concept

Army/Marine Multi-Domain Battle White Paper Available

What Would An Army Optimized For Multi-Domain Battle Look Like?

Sketching Out Multi-Domain Battle Operational Doctrine

U.S. Army Updates Draft Multi-Domain Battle Operating Concept

U.S. Army Multi-Domain Operations Concept Continues Evolving

U.S. Army Doctrine and Future Warfare

 

U.S. Army Doctrine and Future Warfare

Pre-war U.S. Army warfighting doctrine led to fielding the M10, M18 and M36 tank destroyers to counter enemy tanks. Their relatively ineffective performance against German panzers in Europe during World War II has been seen as the result of flawed thinking about tank warfare. [Wikimedia]

Two recently published articles on current U.S. Army doctrine development and the future of warfare deserve to be widely read:

“An Army Caught in the Middle Between Luddites, Luminaries, and the Occasional Looney,”

The first, by RAND’s David Johnson, is titled “An Army Caught in the Middle Between Luddites, Luminaries, and the Occasional Looney,” published by War on the Rocks.

Johnson begins with an interesting argument:

Contrary to what it says, the Army has always been a concepts-based, rather than a doctrine-based, institution. Concepts about future war generate the requirements for capabilities to realize them… Unfortunately, the Army’s doctrinal solutions evolve in war only after the failure of its concepts in its first battles, which the Army has historically lost since the Revolutionary War.

The reason the Army fails in its first battles is because its concepts are initially — until tested in combat — a statement of how the Army “wants to fight” and rarely an analytical assessment of how it “will have to fight.”

Starting with the Army’s failure to develop its own version of “blitzkrieg” after World War I, Johnson identified conservative organizational politics, misreading technological advances, and a stubborn refusal to account for the capabilities of potential adversaries as common causes for the inferior battlefield weapons and warfighting methods that contributed to its impressive string of lost “first battles.”

Conversely, Johnson credited the Army’s novel 1980s AirLand Battle doctrine as the product of an honest assessment of potential enemy capabilities and the development of effective weapon systems that were “based on known, proven technologies that minimized the risk of major program failures.”

“The principal lesson in all of this” he concluded, “is that the U.S. military should have a clear problem that it is trying to solve to enable it to innovate, and is should realize that innovation is generally not invention.” There are “also important lessons from the U.S. Army’s renaissance in the 1970s, which also resulted in close cooperation between the Army and the Air Force to solve the shared problem of the defense of Western Europe against Soviet aggression that neither could solve independently.”

“The US Army is Wrong on Future War”

The other article, provocatively titled “The US Army is Wrong on Future War,” was published by West Point’s Modern War Institute. It was co-authored by Nathan Jennings, Amos Fox, and Adam Taliaferro, all graduates of the School of Advanced Military Studies, veterans of Iraq and Afghanistan, and currently serving U.S. Army officers.

They argue that

the US Army is mistakenly structuring for offensive clashes of mass and scale reminiscent of 1944 while competitors like Russia and China have adapted to twenty-first-century reality. This new paradigm—which favors fait accompli acquisitions, projection from sovereign sanctuary, and indirect proxy wars—combines incremental military actions with weaponized political, informational, and economic agendas under the protection of nuclear-fires complexes to advance territorial influence. The Army’s failure to conceptualize these features of the future battlefield is a dangerous mistake…

Instead, they assert that the current strategic and operational realities dictate a far different approach:

Failure to recognize the ascendancy of nuclear-based defense—with the consequent potential for only limited maneuver, as in the seventeenth century—incurs risk for expeditionary forces. Even as it idealizes Patton’s Third Army with ambiguous “multi-domain” cyber and space enhancements, the US Army’s fixation with massive counter-offensives to defeat unrealistic Russian and Chinese conquests of Europe and Asia misaligns priorities. Instead of preparing for past wars, the Army should embrace forward positional and proxy engagement within integrated political, economic, and informational strategies to seize and exploit initiative.

The factors they cite that necessitate the adoption of positional warfare include nuclear primacy; sanctuary of sovereignty; integrated fires complexes; limited fait accompli; indirect proxy wars; and political/economic warfare.

“Given these realities,” Jennings, Fox, and Taliaferro assert, “the US Army must adapt and evolve to dominate great-power confrontation in the nuclear age. As such, they recommend that the U.S. (1) adopt “an approach more reminiscent of the US Army’s Active Defense doctrine of the 1970s than the vaunted AirLand Battle concept of the 1980s,” (2) “dramatically recalibrate its approach to proxy warfare; and (3) compel “joint, interagency and multinational coordination in order to deliberately align economic, informational, and political agendas in support of military objectives.”

Future U.S. Army Doctrine: How It Wants to Fight or How It Has to Fight?

Readers will find much with which to agree or disagree in each article, but they both provide viewpoints that should supply plenty of food for thought. Taken together they take on a different context. The analysis put forth by Jenninigs, Fox, and Taliaferro can be read as fulfilling Johnson’s injunction to base doctrine on a sober assessment of the strategic and operational challenges presented by existing enemy capabilities, instead of as an aspirational concept for how the Army would prefer to fight a future war. Whether or not Jennings, et al, have accurately forecasted the future can be debated, but their critique should raise questions as to whether the Army is repeating past doctrinal development errors identified by Johnson.

U.S. Army Multi-Domain Operations Concept Continues Evolving

[Sgt. Meghan Berry, US Army/adapted by U.S. Army Modern War Institute]

The U.S. Army Training and Doctrine Command (TRADOC) released draft version 1.5 of its evolving Multi-Domain Operations (MDO) future operating concept last week. Entitled TRADOC Pamphlet 525-3-1, “The U.S. Army in Multi-Domain Operations 2028,” this iteration updates the initial Multi-Domain Battle (MDB) concept issued in October 2017.

According to U.S. Army Chief of Staff (and Chairman of the Joint Chiefs of Staff nominee) General Mark Milley, MDO Concept 1.5 is the first step in the doctrinal evolution. “It describes how U.S. Army forces, as part of the Joint Force, will militarily compete, penetrate, dis-integrate, and exploit our adversaries in the future.”

TRADOC Commander General Stuart Townsend summarized the draft concept thusly:

The U.S. Army in Multi-Domain Operations 2028 concept proposes a series of solutions to solve the problem of layered standoff. The central idea in solving this problem is the rapid and continuous integration of all domains of warfare to deter and prevail as we compete short of armed conflict. If deterrence fails, Army formations, operating as part of the Joint Force, penetrate and dis-integrate enemy anti-access and area denial systems;exploit the resulting freedom of maneuver to defeat enemy systems, formations and objectives and to achieve our own strategic objectives; and consolidate gains to force a return to competition on terms more favorable to the U.S., our allies and partners.

To achieve this, the Army must evolve our force, and our operations, around three core tenets. Calibrated force posture combines position and the ability to maneuver across strategic distances. Multi-domain formations possess the capacity, endurance and capability to access and employ capabilities across all domains to pose multiple and compounding dilemmas on the adversary. Convergence achieves the rapid and continuous integration of all domains across time, space and capabilities to overmatch the enemy. Underpinning these tenets are mission command and disciplined initiative at all warfighting echelons. (original emphasis)

For a look at the evolution of the Army and U.S. Marine Corps doctrinal thinking about multi-domain warfare since early 2017:

Army And Marine Corps Join Forces To Define Multi-Domain Battle Concept

U.S. Army Updates Draft Multi-Domain Battle Operating Concept

 

Trevor Dupuy and Technological Determinism in Digital Age Warfare

Is this the only innovation in weapons technology in history with the ability in itself to change warfare and alter the balance of power? Trevor Dupuy thought it might be. Shot IVY-MIKE, Eniwetok Atoll, 1 November 1952. [Wikimedia]

Trevor Dupuy was skeptical about the role of technology in determining outcomes in warfare. While he did believe technological innovation was crucial, he did not think that technology itself has decided success or failure on the battlefield. As he wrote posthumously in 1997,

I am a humanist, who is also convinced that technology is as important today in war as it ever was (and it has always been important), and that any national or military leader who neglects military technology does so to his peril and that of his country. But, paradoxically, perhaps to an extent even greater than ever before, the quality of military men is what wins wars and preserves nations. (emphasis added)

His conclusion was largely based upon his quantitative approach to studying military history, particularly the way humans have historically responded to the relentless trend of increasingly lethal military technology.

The Historical Relationship Between Weapon Lethality and Battle Casualty Rates

Based on a 1964 study for the U.S. Army, Dupuy identified a long-term historical relationship between increasing weapon lethality and decreasing average daily casualty rates in battle. (He summarized these findings in his book, The Evolution of Weapons and Warfare (1980). The quotes below are taken from it.)

Since antiquity, military technological development has produced weapons of ever increasing lethality. The rate of increase in lethality has grown particularly dramatically since the mid-19th century.

However, in contrast, the average daily casualty rate in combat has been in decline since 1600. With notable exceptions during the 19th century, casualty rates have continued to fall through the late 20th century. If technological innovation has produced vastly more lethal weapons, why have there been fewer average daily casualties in battle?

The primary cause, Dupuy concluded, was that humans have adapted to increasing weapon lethality by changing the way they fight. He identified three key tactical trends in the modern era that have influenced the relationship between lethality and casualties:

Technological Innovation and Organizational Assimilation

Dupuy noted that the historical correlation between weapons development and their use in combat has not been linear because the pace of integration has been largely determined by military leaders, not the rate of technological innovation. “The process of doctrinal assimilation of new weapons into compatible tactical and organizational systems has proved to be much more significant than invention of a weapon or adoption of a prototype, regardless of the dimensions of the advance in lethality.” [p. 337]

As a result, the history of warfare has been exemplified more often by a discontinuity between weapons and tactical systems than effective continuity.

During most of military history there have been marked and observable imbalances between military efforts and military results, an imbalance particularly manifested by inconclusive battles and high combat casualties. More often than not this imbalance seems to be the result of incompatibility, or incongruence, between the weapons of warfare available and the means and/or tactics employing the weapons. [p. 341]

In short, military organizations typically have not been fully effective at exploiting new weapons technology to advantage on the battlefield. Truly decisive alignment between weapons and systems for their employment has been exceptionally rare. Dupuy asserted that

There have been six important tactical systems in military history in which weapons and tactics were in obvious congruence, and which were able to achieve decisive results at small casualty costs while inflicting disproportionate numbers of casualties. These systems were:

  • the Macedonian system of Alexander the Great, ca. 340 B.C.
  • the Roman system of Scipio and Flaminius, ca. 200 B.C.
  • the Mongol system of Ghengis Khan, ca. A.D. 1200
  • the English system of Edward I, Edward III, and Henry V, ca. A.D. 1350
  • the French system of Napoleon, ca. A.D. 1800
  • the German blitzkrieg system, ca. A.D. 1940 [p. 341]

With one caveat, Dupuy could not identify any single weapon that had decisively changed warfare in of itself without a corresponding human adaptation in its use on the battlefield.

Save for the recent significant exception of strategic nuclear weapons, there have been no historical instances in which new and lethal weapons have, of themselves, altered the conduct of war or the balance of power until they have been incorporated into a new tactical system exploiting their lethality and permitting their coordination with other weapons; the full significance of this one exception is not yet clear, since the changes it has caused in warfare and the influence it has exerted on international relations have yet to be tested in war.

Until the present time, the application of sound, imaginative thinking to the problem of warfare (on either an individual or an institutional basis) has been more significant than any new weapon; such thinking is necessary to real assimilation of weaponry; it can also alter the course of human affairs without new weapons. [p. 340]

Technological Superiority and Offset Strategies

Will new technologies like robotics and artificial intelligence provide the basis for a seventh tactical system where weapons and their use align with decisive battlefield results? Maybe. If Dupuy’s analysis is accurate, however, it is more likely that future increases in weapon lethality will continue to be counterbalanced by human ingenuity in how those weapons are used, yielding indeterminate—perhaps costly and indecisive—battlefield outcomes.

Genuinely effective congruence between weapons and force employment continues to be difficult to achieve. Dupuy believed the preconditions necessary for successful technological assimilation since the mid-19th century have been a combination of conducive military leadership; effective coordination of national economic, technological-scientific, and military resources; and the opportunity to evaluate and analyze battlefield experience.

Can the U.S. meet these preconditions? That certainly seemed to be the goal of the so-called Third Offset Strategy, articulated in 2014 by the Obama administration. It called for maintaining “U.S. military superiority over capable adversaries through the development of novel capabilities and concepts.” Although the Trump administration has stopped using the term, it has made “maximizing lethality” the cornerstone of the 2018 National Defense Strategy, with increased funding for the Defense Department’s modernization priorities in FY2019 (though perhaps not in FY2020).

Dupuy’s original work on weapon lethality in the 1960s coincided with development in the U.S. of what advocates of a “revolution in military affairs” (RMA) have termed the “First Offset Strategy,” which involved the potential use of nuclear weapons to balance Soviet superiority in manpower and material. RMA proponents pointed to the lopsided victory of the U.S. and its allies over Iraq in the 1991 Gulf War as proof of the success of a “Second Offset Strategy,” which exploited U.S. precision-guided munitions, stealth, and intelligence, surveillance, and reconnaissance systems developed to counter the Soviet Army in Germany in the 1980s. Dupuy was one of the few to attribute the decisiveness of the Gulf War both to airpower and to the superior effectiveness of U.S. combat forces.

Trevor Dupuy certainly was not an anti-technology Luddite. He recognized the importance of military technological advances and the need to invest in them. But he believed that the human element has always been more important on the battlefield. Most wars in history have been fought without a clear-cut technological advantage for one side; some have been bloody and pointless, while others have been decisive for reasons other than technology. While the future is certainly unknown and past performance is not a guarantor of future results, it would be a gamble to rely on technological superiority alone to provide the margin of success in future warfare.

U.S. Army Mobile Protected Firepower (MPF) Program Update

BAE Systems has submitted its proposal to the U.S. Army to build and test the Mobile Protected Firepower (MPF) vehicle [BAE Systems/Fox News]

When we last checked in with the U.S. Army’s Mobile Protected Firepower (MPF) program—an effort to quickly field a new light tank lightweight armored vehicle with a long-range direct fire capability—Request for Proposals (RFPs) were expected by November 2017 and the first samples by April 2018. It now appears the first MPF prototypes will not be delivered before mid-2020 at the earliest.

According to a recent report by Kris Osborn on Warrior Maven, “The service expects to award two Engineering Manufacturing and Development (EMD) deals by 2019 as part of an initial step to building prototypes from multiple vendors, service officials said. Army statement said initial prototypes are expected within 14 months of a contract award.”

Part of the delay appears to stem from uncertainty about requirements. As Osborn reported, “For the Army, the [MPF} effort involves what could be described as a dual-pronged acquisition strategy in that it seeks to leverage currently available or fast emerging technology while engineering the vehicle with an architecture such that it can integrate new weapons and systems as they emerge over time.”

Among the technologies the Army will seek to integrate into the MPF are a lightweight, heavy caliber main gun, lightweight armor composites, active protection systems, a new generation of higher-resolution targeting sensors, greater computer automation, and artificial intelligence.

Osborn noted that

the Army’s Communications Electronics Research, Development and Engineering Center (CERDEC) is already building prototype sensors – with this in mind. In particular, this early work is part of a longer-range effort to inform the Army’s emerging Next-Generation Combat Vehicle (NGCV). The NGCV, expected to become an entire fleet of armored vehicles, is now being explored as something to emerge in the late 2020s or early 2030s.

These evolving requirements are already impacting the Army’s approach to fielding MPF. It originally intended to “do acquisition differently to deliver capability quickly.” MPF program director Major General David Bassett declared in October 2017, “We expect to be delivering prototypes off of that program effort within 15 months of contract award…and getting it in the hands of an evaluation unit six months after that — rapid!

It is now clear the Army won’t be meeting that schedule after all. Stay tuned.

“Quantity Has A Quality All Its Own”: How Robot Swarms Might Change Future Combat

Humans vs. machines in the film Matrix Revolutions (2003) [Screencap by The Matrix Wiki]

Yesterday, Paul Scharre, director of the Technology and National Security Program at the Center for a New American Security, and prolific writer on the future of robotics and artificial intelligence, posted a fascinating argument on Twitter regarding swarms and mass in future combat.

His thread was in response to an article by Shmuel Shmuel posted on War on the Rocks, which made the case that the same computer processing technology enabling robotic vehicles combined with old fashioned kinetic weapons (i.e. anti-aircraft guns) offered a cost-effective solution to swarms.

Scharre agreed that robotic drones are indeed vulnerable to such countermeasures, but made this point in response:

He then went to contend that robotic swarms offer the potential to reestablish the role of mass in future combat. Mass, either in terms of numbers of combatants or volume of firepower, has played a decisive role in most wars. As the aphorism goes, usually credited to Josef Stalin, “mass has a quality all of its own.”

Scharre observed that the United States went in a different direction in its post-World War II approach to warfare, adopting instead “offset” strategies that sought to leverage superior technology to balance against the mass militaries of the Communist bloc.

While effective during the Cold War, Scharre concurs with the arguments that offset strategies are becoming far too expensive and may ultimately become self-defeating.

In order to avoid this fate, Scharre contends that

The entire thread is well worth reading.

Trevor Dupuy would have agreed with much of what Scharre’s asserts. He identified the relationship between increasing weapon lethality and battlefield dispersion that goes back to the 17th century. Dupuy believed that the primary factor driving this relationship was the human response to fear in a lethal environment, with soldiers dispersing in depth and frontage on battlefields in order to survive weapons of ever increasing destructiveness.

TDI Friday Read: Lethality, Dispersion, And Mass On Future Battlefields

Robots might very well change that equation. Whether autonomous or “human in the loop,” robotic swarms do not feel fear and are inherently expendable. Cheaply produced robots might very well provide sufficient augmentation to human combat units to restore the primacy of mass in future warfare.