Tag Tanks

Counting Holes in Tanks in Tunisia

M4A1 Sherman destroyed in combat in Tunisia, 1943.

[NOTE: This piece was originally posted on 23 August 2016]

A few years ago, I came across a student battle analysis exercise prepared by the U.S. Army Combat Studies Institute on the Battle of Kasserine Pass in Tunisia in February 1943. At the time, I noted the diagram below (click for larger version), which showed the locations of U.S. tanks knocked out during a counterattack conducted by Combat Command C (CCC) of the U.S. 1st Armored Division against elements of the German 10th and 21st Panzer Divisions near the village of Sidi Bou Zid on 15 February 1943. Without reconnaissance and in the teeth of enemy air superiority, the inexperienced CCC attacked directly into a classic German tank ambush. CCC’s drive on Sidi Bou Zid was halted by a screen of German anti-tank guns, while elements of the two panzer divisions attacked the Americans on both flanks. By the time CCC withdrew several hours later, it had lost 46 of 52 M4 Sherman medium tanks, along with 15 officers and 298 men killed, captured, or missing.

Sidi Bou Zid00During a recent conversation with my colleague, Chris Lawrence, I recalled the diagram and became curious where it had originated. It identified the location of each destroyed tank, which company it belonged to, and what type of enemy weapon apparently destroyed it; significant battlefield features; and the general locations and movements of the enemy forces. What it revealed was significant. None of CCC’s M4 tanks were disabled or destroyed by a penetration of their frontal armor. Only one was hit by a German 88mm round from either the anti-tank guns or from the handful of available Panzer Mk. VI Tigers. All of the rest were hit with 50mm rounds from Panzer Mk. IIIs, which constituted most of the German force, or by 75mm rounds from Mk. IV’s. The Americans were not defeated by better German tanks. The M4 was superior to the Mk. III and equal to the Mk. IV; the dreaded 88mm anti-tank guns and Tiger tanks played little role in the destruction. The Americans had succumbed to superior German tactics and their own errors.

Counting dead tanks and analyzing their cause of death would have been an undertaking conducted by military operations researchers, at least in the early days of the profession. As Chris pointed out however, the Kasserine battle took place before the inception of operations research in the U.S. Army.

After a bit of digging online, I still have not been able to establish paternity of the diagram, but I think it was created as part of a battlefield survey conducted by the headquarters staff of either the U.S. 1st Armored Division, or one of its subordinate combat commands. The only reference I can find for it is as part of a historical report compiled by Brigadier General Paul Robinett, submitted to support the preparation of Northwest Africa: Seizing the Initiative in the West by George F. Howe, the U.S. Army Center of Military History’s (CMH) official history volume on U.S. Army operations in North Africa, published in 1956. Robinett was the commander of Combat Command B, U.S. 1st Armored Division during the Battle of Kasserine Pass, but did not participate in the engagement at Sidi Bou Zid. His report is excerpted in a set of readings (pp. 103-120) provided as background material for a Kasserine Pass staff ride prepared by CMH. (Curiously, the account of the 15 February engagement at Sidi Bou Zid in Northwest Africa [pp. 419-422] does not reference Robinett’s study.)

Robinett’s report appeared to include an annotated copy of a topographical map labeled “approximate location of destroyed U.S. tanks (as surveyed three weeks later).” This suggests that the battlefield was surveyed in late March 1943, after U.S. forces had defeated the Germans and regained control of the area.

Sidi Bou Zid02The report also included a version of the schematic diagram later reproduced by CMH. The notes on the map seem to indicate that the survey was the work of staff officers, perhaps at Robinett’s direction, possibly as part of an after-action report.

Sidi Bou Zid03If anyone knows more about the origins of this bit of battlefield archaeology, I would love to know more about it. As far as I know, this assessment was unique, at least in the U.S. Army in World War II.

TDI Friday Read: Tank Combat at Kursk

Today’s edition of TDI Friday Read is a roundup of posts by TDI President Christopher Lawrence exploring the details of tank combat between German and Soviet forces at the Battle of Kursk in 1943. The prevailing historical interpretation of Kursk is of the Soviets using their material and manpower superiority to blunt and then overwhelm the German offensive. This view is often buttressed by looking at the  ratio of the numbers of tanks destroyed in combat. Chris takes a deeper look at the data, the differences in the ways “destroyed” tanks were counted and reported, and the differing philosophies between the German and Soviet armies regarding damaged tank recovery and repair. This yields a much more nuanced perspective on the character of tank combat at Kursk that does not necessarily align with the prevailing historical interpretations. Historians often discount detailed observational data on combat as irrelevant or too difficult to collect and interpret. We at TDI believe that with history, the devil is always in the details.

Armor Exchange Ratios at Kursk

Armor Exchange Ratios at Kursk, 5 and 6 July 1943

Soviet Tank Repairs at Kursk (part 1 of 2)

Soviet Tank Repairs at Kursk (part 2 of 2)

German Damaged versus Destroyed Tanks at Kursk

Soviet Damaged versus Destroyed Tanks at Kursk

Comparative Tank Exchange Ratios at Kursk

Simpkin on the Long-Term Effects of Firepower Dominance

To follow on my earlier post introducing British military theorist Richard Simpkin’s foresight in detecting trends in 21st Century warfare, I offer this paragraph, which immediately followed the ones I quoted:

Briefly and in the most general terms possible, I suggest that the long-term effect of dominant firepower will be threefold. It will disperse mass in the form of a “net” of small detachments with the dual role of calling down fire and of local quasi-guerrilla action. Because of its low density, the elements of this net will be everywhere and will thus need only the mobility of the boot. It will transfer mass, structurally from the combat arms to the artillery, and in deployment from the direct fire zone (as we now understand it) to the formation and protection of mobile fire bases capable of movement at heavy-track tempo (Chapter 9). Thus the third effect will be to polarise mobility, for the manoeuvre force still required is likely to be based on the rotor. This line of thought is borne out by recent trends in Soviet thinking on the offensive. The concept of an operational manoeuvre group (OMG) which hives off raid forces against C3 and indirect fire resources is giving way to more fluid and discontinuous manoeuvre by task forces (“air-ground assault groups” found by “shock divisions”) directed onto fire bases—again of course with an operational helicopter force superimposed. [Simpkin, Race To The Swift, p. 169]

It seems to me that in the mid-1980s, Simpkin accurately predicted the emergence of modern anti-access/area denial (A2/AD) defensive systems with reasonable accuracy, as well the evolving thinking on the part of the U.S. military as to how to operate against them.

Simpkin’s vision of task forces (more closely resembling Russian/Soviet OMGs than rotary wing “air-ground assault groups” operational forces, however) employing “fluid and discontinuous manoeuvre” at operational depths to attack long-range precision firebases appears similar to emerging Army thinking about future multidomain operations. (It’s likely that Douglas MacGregor’s Reconnaissance Strike Group concept more closely fits that bill.)

One thing he missed on was his belief that rotary wing helicopter combat forces would supplant armored forces as the primary deep operations combat arm. However, there is the potential possibility that drone swarms might conceivably take the place in Simpkin’s operational construct that he allotted to heliborne forces. Drones have two primary advantages over manned helicopters: they are far cheaper and they are far less vulnerable to enemy fires. With their unique capacity to blend mass and fires, drones could conceivably form the deep strike operational hammer that Simpkin saw rotary wing forces providing.

Just as interesting was Simpkin’s anticipation of the growing importance of information and electronic warfare in these environments. More on that later.

Richard Simpkin on 21st Century Trends in Mass and Firepower

Anvil of “troops” vs. anvil of fire. (Richard Simpkin, Race To The Swift: Thoughts on Twenty-First Century Warfare, Brassey’s: London, 1985, p. 51)

For my money, one of the most underrated analysts and theorists of modern warfare was the late Brigadier Richard Simpkin. A retired British Army World War II veteran, Simpkin helped design the Chieftan tank in the 60s and 70s. He is best known for his series of books analyzing Soviet and Western military theory and doctrine. His magnum opus was Race To The Swift: Thoughts on Twenty-First Century Warfare, published in 1985. A brilliant blend of military history, insightful analysis of tactics and technology as well as operations and strategy, and Simpkin’s idiosyncratic wit, the observations in Race To The Swift are becoming more prescient by the year.

Some of Simpkin’s analysis has not aged well, such as the focus on the NATO/Soviet confrontation in Central Europe, and a bold prediction that rotary wing combat forces would eventually supplant tanks as the primary combat arm. However, it would be difficult to find a better historical review of the role of armored forces in modern warfare and how trends in technology, tactics, and doctrine are interacting with strategy, policy, and politics to change the character of warfare in the 21st Century.

To follow on my previous post on the interchangeability of fire (which I gleaned from Simpkin, of course), I offer this nugget on how increasing weapons lethality would affect 21st Century warfare, written from the perspective of the mid 1980s:

While accidents of ground will always provide some kind of cover, the effect of modern firepower on land force tactics is equally revolutionary. Just as we saw in Part 2 how the rotary wing may well turn force structures inside out, firepower is already turning tactical concepts inside out, by replacing the anvil of troops with an anvil of fire (Fig. 5, page 51)*. The use of combat troops at high density to hold ground or to seize it is already likely to prove highly costly, and may soon become wholly unprofitable. The interesting question is what effect the dominance of firepower will have at operational level.

One school of thought, to which many defence academics on both sides of the Atlantic subscribe, is that it will reduce mobility and bring about a return to positional warfare. The opposite view is that it will put a premium on elusiveness, increasing mobility and reducing mass. On analysis, both these opinions appear rather simplistic, mainly because they ignore the interchangeability of troops and fire…—in other words the equivalence or complementarity of the movement of troops and the massing of fire. They also underrate the part played by manned and unmanned surveillance, and by communication. Another factor, little understood by soldiers and widely ignored, is the weight of fire a modern fast jet in its strike configuration, flying a lo-lo-lo profile, can put down very rapidly wherever required. With modern artillery and air support, a pair of eyes backed up by an unjammable radio and perhaps a thermal imager becomes the equivalent of at least a (company) combat team, perhaps a battle group. [Simpkin, Race To The Swift, pp. 168-169]

Sound familiar? I will return to Simpkin’s insights in future posts, but I suggest you all snatch up a copy of Race To The Swift for yourselves.

* See above.

Artillery Effectiveness vs. Armor (Part 5-Summary)

U.S. Army 155mm field howitzer in Normandy. [padresteve.com]

[This series of posts is adapted from the article “Artillery Effectiveness vs. Armor,” by Richard C. Anderson, Jr., originally published in the June 1997 edition of the International TNDM Newsletter.]

Posts in the series
Artillery Effectiveness vs. Armor (Part 1)
Artillery Effectiveness vs. Armor (Part 2-Kursk)
Artillery Effectiveness vs. Armor (Part 3-Normandy)
Artillery Effectiveness vs. Armor (Part 4-Ardennes)
Artillery Effectiveness vs. Armor (Part 5-Summary)

Table IX shows the distribution of cause of loss by type or armor vehicle. From the distribution it might be inferred that better protected armored vehicles may be less vulnerable to artillery attack. Nevertheless, the heavily armored vehicles still suffered a minimum loss of 5.6 percent due to artillery. Unfortunately the sample size for heavy tanks was very small, 18 of 980 cases or only 1.8 percent of the total.

The data are limited at this time to the seven cases.[6] Further research is necessary to expand the data sample so as to permit proper statistical analysis of the effectiveness of artillery versus tanks.

NOTES

[18] Heavy armor includes the KV-1, KV-2, Tiger, and Tiger II.

[19] Medium armor includes the T-34, Grant, Panther, and Panzer IV.

[20] Light armor includes the T-60, T-70. Stuart, armored cars, and armored personnel carriers.

Artillery Effectiveness vs. Armor (Part 4-Ardennes)

Knocked-out Panthers in Krinkelt, Belgium, Battle of the Bulge, 17 December 1944. [worldwarphotos.info]

[This series of posts is adapted from the article “Artillery Effectiveness vs. Armor,” by Richard C. Anderson, Jr., originally published in the June 1997 edition of the International TNDM Newsletter.]

Posts in the series
Artillery Effectiveness vs. Armor (Part 1)
Artillery Effectiveness vs. Armor (Part 2-Kursk)
Artillery Effectiveness vs. Armor (Part 3-Normandy)
Artillery Effectiveness vs. Armor (Part 4-Ardennes)
Artillery Effectiveness vs. Armor (Part 5-Summary)

NOTES

[14] From ORS Joint Report No. 1. A total of an estimated 300 German armor vehicles were found following the battle.

[15] Data from 38th Infantry After Action Report (including “Sketch showing enemy vehicles destroyed by 38th Inf Regt. and attached units 17-20 Dec. 1944″), from 12th SS PzD strength report dated 8 December 1944, and from strengths indicated on the OKW briefing maps for 17 December (1st [circa 0600 hours], 2d [circa 1200 hours], and 3d [circa 1800 hours] situation), 18 December (1st and 2d situation), 19 December (2d situation), 20 December (3d situation), and 21 December (2d and 3d situation).

[16] Losses include confirmed and probable losses.

[17] Data from Combat Interview “26th Infantry Regiment at Dom Bütgenbach” and from 12th SS PzD, ibid.

Artillery Effectiveness vs. Armor (Part 3-Normandy)

The U.S. Army 333rd Field Artillery Battalion (Colored) in Normandy, July 1944 (US Army Photo/Tom Gregg)

[This series of posts is adapted from the article “Artillery Effectiveness vs. Armor,” by Richard C. Anderson, Jr., originally published in the June 1997 edition of the International TNDM Newsletter.]

Posts in the series
Artillery Effectiveness vs. Armor (Part 1)
Artillery Effectiveness vs. Armor (Part 2-Kursk)
Artillery Effectiveness vs. Armor (Part 3-Normandy)
Artillery Effectiveness vs. Armor (Part 4-Ardennes)
Artillery Effectiveness vs. Armor (Part 5-Summary)

NOTES

[10] From ORS Report No. 17.

[11] Five of the 13 counted as unknown were penetrated by both armor piercing shot and by infantry hollow charge weapons. There was no evidence to indicate which was the original cause of the loss.

[12] From ORS Report No. 17

[13] From ORS Report No. 15. The “Pocket” was the area west of the line Falaise-Argentan and east of the line Vassy-Gets-Domfront in Normandy that was the site in August 1944 of the beginning of the German retreat from France. The German forces were being enveloped from the north and south by Allied ground forces and were under constant, heavy air attack.

Artillery Effectiveness vs. Armor (Part 2-Kursk)

15 cm schwere Feldhaubitze 18 (15 cm s.FH 18 L/29,5)

German Army 150mm heavy field howitzer 18 L/29.5 battery. [Panzer DB/Pinterest]

[This series of posts is adapted from the article “Artillery Effectiveness vs. Armor,” by Richard C. Anderson, Jr., originally published in the June 1997 edition of the International TNDM Newsletter.]

Posts in the series
Artillery Effectiveness vs. Armor (Part 1)
Artillery Effectiveness vs. Armor (Part 2-Kursk)
Artillery Effectiveness vs. Armor (Part 3-Normandy)
Artillery Effectiveness vs. Armor (Part 4-Ardennes)
Artillery Effectiveness vs. Armor (Part 5-Summary)

Curiously, at Kursk, in the case where the highest percent loss was recorded, the German forces opposing the Soviet 1st Tank Army—mainly the XLVIII Panzer Corps of the Fourth Panzer Army—were supported by proportionately fewer artillery pieces (approximately 56 guns and rocket launchers per division) than the US 1st Infantry Division at Dom Bütgenbach (the equivalent of approximately 106 guns per division)[4]. Nor does it appear that the German rate of fire at Kursk was significantly higher than that of the American artillery at Dom Bütgenbach. On 20 July at Kursk, the 150mm howitzers of the 11th Panzer Division achieved a peak rate of fire of 87.21 rounds per gum. On 21 December at Dom Bütgenbach, the 155mm howitzers of the 955th Field Artillery Battalion achieved a peak rate of fire of 171.17 rounds per gun.[5]

NOTES

[4] The US artillery at Dom Bütgenbach peaked on 21 December 1944 when a total of 210 divisional and corps pieces fired over 10,000 rounds in support of the 1st Division’s 26th Infantry.

[5] Data collected on German rates of fire are fragmentary, but appear to be similar to that of the American Army in World War ll. An article on artillery rates of fire that explores the data in more detail will be forthcoming in a future issue of this newsletter. [NOTE: This article was not completed or published.]

Notes to Table I.

[8] The data were found in reports of the 1st Tank Army (Fond 299, Opis‘ 3070, Delo 226). Obvious math errors in the original document have been corrected (the total lost column did not always agree with the totals by cause). The total participated column evidently reflected the starting strength of the unit, plus replacement vehicles. “Burned'” in Soviet wartime documents usually indicated a total loss, however it appears that in this case “burned” denoted vehicles totally lost due to direct fire antitank weapons. “Breakdown” apparently included both mechanical breakdown and repairable combat damage.

[9] Note that the brigade report (Fond 3304, Opis‘ 1, Delo 24) contradicts the army report. The brigade reported that a total of 28 T-34s were lost (9 to aircraft and 19 to “artillery”) and one T-60 was destroyed by a mine. However, this report was made on 11 July, during the battle, and may not have been as precise as the later report recorded by 1st Tank Army. Furthermore, it is not as clear in the brigade report that “artillery” referred only to indirect fire HE and not simply lo both direct and indirect fire guns.

Artillery Effectiveness vs. Armor (Part 1)

A U.S. M1 155mm towed artillery piece being set up for firing during the Battle of the Bulge, December 1944.

[This series of posts is adapted from the article “Artillery Effectiveness vs. Armor,” by Richard C. Anderson, Jr., originally published in the June 1997 edition of the International TNDM Newsletter.]

Posts in the series
Artillery Effectiveness vs. Armor (Part 1)
Artillery Effectiveness vs. Armor (Part 2-Kursk)
Artillery Effectiveness vs. Armor (Part 3-Normandy)
Artillery Effectiveness vs. Armor (Part 4-Ardennes)
Artillery Effectiveness vs. Armor (Part 5-Summary)

The effectiveness of artillery against exposed personnel and other “soft” targets has long been accepted. Fragments and blast are deadly to those unfortunate enough to not be under cover. What has also long been accepted is the relative—if not total—immunity of armored vehicles when exposed to shell fire. In a recent memorandum, the United States Army Armor School disputed the results of tests of artillery versus tanks by stating, “…the Armor School nonconcurred with the Artillery School regarding the suppressive effects of artillery…the M-1 main battle tank cannot be destroyed by artillery…”

This statement may in fact be true,[1] if the advancement of armored vehicle design has greatly exceeded the advancement of artillery weapon design in the last fifty years. [Original emphasis] However, if the statement is not true, then recent research by TDI[2] into the effectiveness of artillery shell fire versus tanks in World War II may be illuminating.

The TDI search found that an average of 12.8 percent of tank and other armored vehicle losses[3] were due to artillery fire in seven eases in World War II where the cause of loss could be reliably identified. The highest percent loss due to artillery was found to be 14.8 percent in the case of the Soviet 1st Tank Army at Kursk (Table II). The lowest percent loss due to artillery was found to be 5.9 percent in the case of Dom Bütgenbach (Table VIII).

The seven cases are split almost evenly between those that show armor losses to a defender and those that show losses to an attacker. The first four cases (Kursk, Normandy l. Normandy ll, and the “Pocket“) are engagements in which the side for which armor losses were recorded was on the defensive. The last three cases (Ardennes, Krinkelt. and Dom Bütgenbach) are engagements in which the side for which armor losses were recorded was on the offensive.

Four of the seven eases (Normandy I, Normandy ll, the “Pocket,” and Ardennes) represent data collected by operations research personnel utilizing rigid criteria for the identification of the cause of loss. Specific causes of loss were only given when the primary destructive agent could be clearly identified. The other three cases (Kursk, Krinkelt, and Dom Bütgenbach) are based upon combat reports that—of necessity—represent less precise data collection efforts.

However, the similarity in results remains striking. The largest identifiable cause of tank loss found in the data was, predictably, high-velocity armor piercing (AP) antitank rounds. AP rounds were found to be the cause of 68.7 percent of all losses. Artillery was second, responsible for 12.8 percent of all losses. Air attack as a cause was third, accounting for 7.4 percent of the total lost. Unknown causes, which included losses due to hits from multiple weapon types as well as unidentified weapons, inflicted 6.3% of the losses and ranked fourth. Other causes, which included infantry antitank weapons and mines, were responsible for 4.8% of the losses and ranked fifth.

NOTES

[1] The statement may be true, although it has an “unsinkable Titanic,” ring to it. It is much more likely that this statement is a hypothesis, rather than a truism.

[2] As pan of this article a survey of the Research Analysis Corporation’s publications list was made in an attempt to locate data from previous operations research on the subject. A single reference to the study of tank losses was found. Group 1 Alvin D. Coox and L. Van Loan Naisawald, Survey of Allied Tank Casualties in World War II, CONFIDENTIAL ORO Report T-117, 1 March 1951.

[3] The percentage loss by cause excludes vehicles lost due to mechanical breakdown or abandonment. lf these were included, they would account for 29.2 percent of the total lost. However, 271 of the 404 (67.1%) abandoned were lost in just two of the cases. These two cases (Normandy ll and the Falaise Pocket) cover the period in the Normandy Campaign when the Allies broke through the German defenses and began the pursuit across France.

U.S. Army Mobile Protected Firepower (MPF) Program Update

BAE Systems has submitted its proposal to the U.S. Army to build and test the Mobile Protected Firepower (MPF) vehicle [BAE Systems/Fox News]

When we last checked in with the U.S. Army’s Mobile Protected Firepower (MPF) program—an effort to quickly field a new light tank lightweight armored vehicle with a long-range direct fire capability—Request for Proposals (RFPs) were expected by November 2017 and the first samples by April 2018. It now appears the first MPF prototypes will not be delivered before mid-2020 at the earliest.

According to a recent report by Kris Osborn on Warrior Maven, “The service expects to award two Engineering Manufacturing and Development (EMD) deals by 2019 as part of an initial step to building prototypes from multiple vendors, service officials said. Army statement said initial prototypes are expected within 14 months of a contract award.”

Part of the delay appears to stem from uncertainty about requirements. As Osborn reported, “For the Army, the [MPF} effort involves what could be described as a dual-pronged acquisition strategy in that it seeks to leverage currently available or fast emerging technology while engineering the vehicle with an architecture such that it can integrate new weapons and systems as they emerge over time.”

Among the technologies the Army will seek to integrate into the MPF are a lightweight, heavy caliber main gun, lightweight armor composites, active protection systems, a new generation of higher-resolution targeting sensors, greater computer automation, and artificial intelligence.

Osborn noted that

the Army’s Communications Electronics Research, Development and Engineering Center (CERDEC) is already building prototype sensors – with this in mind. In particular, this early work is part of a longer-range effort to inform the Army’s emerging Next-Generation Combat Vehicle (NGCV). The NGCV, expected to become an entire fleet of armored vehicles, is now being explored as something to emerge in the late 2020s or early 2030s.

These evolving requirements are already impacting the Army’s approach to fielding MPF. It originally intended to “do acquisition differently to deliver capability quickly.” MPF program director Major General David Bassett declared in October 2017, “We expect to be delivering prototypes off of that program effort within 15 months of contract award…and getting it in the hands of an evaluation unit six months after that — rapid!

It is now clear the Army won’t be meeting that schedule after all. Stay tuned.