Tag strategic studies

Military History Publications By Women

Grace Person Hayes, The History of the Joint Chiefs of Staff in World War II: The War Against Japan, Naval Institute Press, 1982. If you have an interest in World War II, strategy, and strategy-making and have not yet read this, I highly recommend it.

Lists of suggested and recommended books continue to be popular in national security and strategic studies circles. General Mark Milley, the Chief of Staff of the U.S. Army, recently released his professional reading list for 2017. This list covers topics addressing battles and campaigns, the army profession, and strategy and the strategic environment.

While the extended list comprises many relevant and notable works, some readers pointed out that it contains only one work authored by a woman, Barbara W. Tuchman’s classic The Guns Of August, published in 1962. In response, a call went out on Twitter to solicit titles of books by women on military history subjects. The initial version of this list is posted here.

This list of books on military history (and other related topics) is not exhaustive, nor the only one available, but it amply demonstrates that in 2017, there really is no shortage of worthy and appropriate publications written by women available for inclusion on professional reading lists. The addition of any of these titles would provide a broader perspective to any undertaking specifically intended to expand the thinking of students and practitioners.

It also shows that women are publishing works that are interesting in their own right but don’t seem to be getting the recognition that they deserve. Like Eric M. Murphy, I took a look at my own personal book collection and realized just how few of them were written by women. I am reasonably certain that I don’t intentionally avoid buying books by women, but I have tangible proof that I have done so regardless. I have read or am familiar with many of the works on the list cited above, many of which I can and have recommended without reservation. But there are also many titles that I have not yet looked at, so I have some work to do. I can do better at this and if I find something noteworthy, I can pipe up about it. I think we all can.

Defending Guam From North Korean Ballistic Missiles

The North Korean ballistic missile threat to Guam [Reuters]

Gerry Doyle has an excellent article in The New York Times exploring the issue of defending the island of Guam from a potential North Korean ballistic missile threat. In response to President Donald Trump’s comments earlier this week, North Korea issued an oddly specific threat to conduct a ballistic missile test targeting the area around Guam.

Key takeaways from the article:

  • The U.S. Terminal High Altitude Area Defense (THAAD) ballistic missile (BMD) system based in South Korea would have no chance of intercepting a Hwasong-12 intermediate-range ballistic missile (IRBM) during its initial ascent (boost-phase). THAAD is not designed for boost-phase intercept.
  • Japan fields a sea-based U.S. Aegis BMD equipped with SM-3 missiles, which is designed to intercept short-, medium-, and intermediate-range ballistic missiles at the middle (mid-course) and final (terminal phase) parts of their flight. It is likely that a Hwasong-12 moving toward Guam would be out of SM-3 range as it passed over Japan, however.
  • Guam itself is defended by a layered BMD system including sea-based U.S. Aegis, THAAD, and Patriot PAC-3 batteries, which are all designed to engage incoming ballistic missiles during mid-course and terminal phase. This is where an intercept would most likely occur.

Despite possessing the technical capability for intercepting a provocative North Korean missile test, Doyle points out a tricky policy problem for the U.S.

If Japan or the United States shoots down the missiles, North Korea could see it as an escalation, prompting a military response. If they do nothing, and allow the North Korean missiles to fly unharmed, it’s unclear how Pyongyang would interpret it.

On the other hand, if they try to intercept the missiles but fail, it could undermine the credibility of both countries’ assurances that their antimissile systems can work.

Stay tuned.

So, What Would Happen If The Norks Did Fire An ICBM At The U.S.?

The intercontinental ballistic missile Hwasong-14 is allegedly seen during its test in this undated photo released by North Korea’s Korean Central News Agency (KCNA) in Pyongyang, July, 4 2017. [KCNA/via REUTERS]

This past July, North Korea conducted a pair of test launches of a new intercontinental ballistic missile (ICBM), which it calls the Hwasong-14 (“Mars”). While North Korean leader Kim Jong-Un claimed the vehicle can strike “any region and place any time,” skeptical Western military analysts concede it likely has the range to reach much of the United States. (There is disagreement as to whether the Hawsong-14 can actually deliver a nuclear warhead to targets in the Eastern U.S., but analysts concur that it can strike Hawaii, Alaska, and the Western U.S.)

According to a recent Defense Intelligence Agency assessment, the North Koreans have developed nuclear warheads small enough to be mounted on its ballistic missiles, including the Hwasong-14. The DIA estimate also credited the North Koreans with a stockpile of up to 60 nuclear weapons, though some outside analysts believe it to be fewer.

Earlier this week, North Korean Foreign Minister Ri Yong Ho vowed that, “Should the U.S. pounce upon the DPRK (Democratic People’s Republic of Korea) with military force at last, the DPRK is ready to teach the U.S. a severe lesson with its strategic nuclear force.”

What real capability does a functional ICBM with nuclear warheads provide the North Koreans? What would happen if they did attempt a nuclear attack on the U.S.? The answer is that no one, including the North Koreans, knows with any certainty.

Hitting A Bullet With A Bullet: Ballistic Missile Defense

Shooting down an incoming ICBM has been likened to “hitting a bullet with a bullet”; however IBCMs travel at speeds eight times faster than a bullet. The only current ballistic missile defense (BMD) system the U.S. possesses capable of intercepting ICBMs is the Ground-Based Midcourse Defense (GMD), a combination of Ground Based Interceptors (GBIs), long-range radars, and a distributed fire control system. There are only two existing GMD emplacements, one at Ft. Greely, Alaska, and the other at Vandenberg Air Force Base in California. The Ft. Greely site houses 30 GBIs, though ten more are scheduled for deployment there, and four are based at Vandenberg, for a total of 44 by the end of 2017.

GMD has demonstrated a mixed track record in tests, achieving 10 intercepts in 18 attempts (55%). U.S. Air Force General Lori Robinson, commander of the U.S. Northern Command, nevertheless told the Senate Armed Services Committee in April that “Today we have exactly what we need to defend the United States of America against North Korea.”

This conclusion has been questioned by the Government Accountability Office, National Academy of Sciences, and the Union of Concerned Scientists, who have all sharply criticized GMD’s technical viability and accuracy. GMD’s advocates claim that using a “shoot-look-shoot” tactic, which would target an incoming ICBM with successive GBIs raises the odds of success. However, the Union of Concerned Scientists have calculated that if the North Koreans were to fire a volley of five ICBMs and each GBI had a 50% chance of a successful interception, there would be a 28% chance that one of the North Korean missiles would get through.

The U.S. fields three regional or theater BMDs, Aegis, Patriot, and Terminal High Altitude Area Defense (THAAD). These were developed to engage short- to intermediate-range ballistic missile threats, however, not ICBMs, which travel much faster and higher. They are, however, a key component in defending South Korea, Japan, and other countries in the region from North Korean ballistic missile attack.

Another potential ICBM defense would be to interdict the missiles before they are launched. Liquid-fueled missiles such as the Hwasong-14 require hours to fuel with highly volatile propellants, rendering them vulnerable to conventional air or missile attack. While the U.S. and the South Koreans are able to detect test preparations ahead of time, they have not been able to pinpoint launch sites in real time before firing. The North Koreans have developed mobile launchers and capabilities for quickly firing missiles from remote areas of the country far from existing infrastructure. (As the U.S. and its Coalition allies discovered in the 1991 Gulf War, interdicting mobile ballistic missile launchers is a difficult task even with complete air superiority.) Successfully interdicting a North Korean ICBM launch would require far better U.S./South Korean intelligence/surveillance/reconnaissance capabilities than those currently available.

“If he says they can’t hit Nevada on a clear day, you better believe it”

Should a North Korean ICBM successfully evade U.S. missile defenses, what would happen next? This is also a very good question with no clear answer. Conducting a successful ICBM attack with a nuclear weapon is an extraordinarily challenging technical task, which requires a lot of sophisticated technology to function flawlessly under rigorous conditions. The U.S. has tested an ICBM/nuclear warhead under operational conditions only once, with Shot FRIGATE BIRD during Operation DOMINIC in 1962. The submarine U.S.S. Ethan Allen fired a Polaris A2 ballistic missile armed with a 600-kiloton W-47 thermonuclear warhead, which detonated successfully in the air 2,000 meters from target over Johnston Island, 120 miles away in the Pacific Ocean.

Some analysts believe that the re-entry vehicle (RV) from the 28 July Hwasong-14 test broke up before landing. It is unlikely a real warhead would have survived such a failure. RV’s house a ballistic missile’s warhead, protecting it from the stresses of flight and atmospheric reentry and provide the terminal guidance onto the target. The U.S. required years of extensive, expensive testing before it perfected an ICBM RV. While North Korea has developed effective RVs for its shorter range ballistic missiles, the lack of a durable one for the Hwasong-14 will degrade its potential effectiveness and accuracy for the time being.

If a Hwasong-14 RV did manage to survive reentry, what then? On target is a relative term, even with nuclear weapons. North Korea is believed to have developed only kiloton-range fission-type nuclear devices, not megaton-range thermonuclear warheads. Size imposes limits on the yield of fission devices. The Hwasong-14 is estimated to be capable of delivering a payload of only 500 kg or less at intercontinental ranges, which would have to include the RV and the warhead. To date, the North Koreans have tested devices yielding  10-15 kilotons. With the addition of fission-boosting using deuterium, lithium-6, or tritium, the total yield might be significantly enhanced. Some analysts credit the North Koreans with the capability for building a boosted, composite pit device yielding somewhere in the 30-kiloton range. For comparison’s sake, the Fat Man fission bomb dropped on Nagasaki in 1945 had a yield of approximately 21 kilotons.

There is no firm estimate of the Hwasong-14’s circular error of probability (CEP) or the radius within which 50% of missile impacts would theoretically be expected to land, a standard measure of ballistic missile accuracy. By scaling up the accuracy of the Hwasong-14’s SCUD missile antecedent to intercontinental range, one analysis estimated a CEP of 30 kilometers. A blunt-body shaped RV and hasty launches from remote sites would hamper accuracy as well. It is also plausibly arguable that North Korea might be capable of matching the 3-5 kilometer CEP of the first Soviet ICBM, the R-7.

With a CEP of 30 kilometers, it would be entirely possible for a Hwasong-14 to fly successfully, evade U.S. BMDs, detonate effectively, and still completely miss a target as large as Los Angeles.

Map of a hypothetical strike on Los Angeles with a 30-kiloton nuclear airburst, delivered by a ballistic missile with a 30 kilometer CEP. The red cross represents the designated ground zero, the blue lines indicate the CEP radius, and the red dot represents the radius of 5-psi overpressure effects from the nuclear explosion. [MISSILEMAP by Alex Wellerstein, RESTRICTED DATA: The Nuclear Secrecy Blog ]

A CEP of 3-5 kilometers would greatly increase the probability of even a near-miss hitting a densely populated section of the city, killing and injuring tens or hundreds of thousands, if not more.

Map of a hypothetical strike on Los Angeles with a 30-kiloton nuclear airburst, delivered by a ballistic missile with a 3-5 kilometer CEP. The red cross represents the designated ground zero, the blue lines indicate the CEP radius, and the red dot represents the radius of 5-psi overpressure effects from the nuclear explosion. [MISSILEMAP by Alex Wellerstein, RESTRICTED DATA: The Nuclear Secrecy Blog ]
A Catastrophe Of Unimaginable Consequences

Close observers of the North Korean nuclear and missile programs understand that the July missile tests represent a nominal, but real, capability for delivering a nuclear ballistic missile strike against the U.S. The challenges in improving this capability are formidable, but they are technical in nature and there is no reason to believe the North Koreans cannot solve them in time. A true game changer would be the ability to deliver a thermonuclear warhead yielding hundreds of kilotons or more. Some analysts see this development as inevitable.

Regardless of the scenario, the launch of any North Korean nuclear-armed ICBMs toward the United States could only be regarded as a catastrophic failure of American foreign and military policy. The consequences of even a limited nuclear strike on U.S. soil would be effectively unimaginable, far beyond the death, destruction, and inevitable reality of retaliation-in-kind against the North Korean regime.

It would also represent a failure of any rational North Korean defense policy as well, since the only value ICBMs have to North Korea is in deterring foreign attack. They are militarily useless to prevent a counterattack that would invariably destroy Kim Jong-Un’s government. Their only value lies in the political threat to use them.

It would seem then that the U.S. and North Korea share a common interest in seeing that North Korea’s ICBMs are never used. The only sensible means to that end lie in deterrence and negotiation.

Trevor Dupuy on Military Innovation

In an article published by the Association of the U.S. Army last November that I missed on the first go around, U.S. Army Colonel Eric E. Aslakson and Lieutenant Colonel Richard T. Brown, (ret.) make the argument that “Staff colonels are the Army’s innovation center of gravity.”

The U.S. defense community has settled upon innovation as one of the key methods for overcoming the challenges posed by new technologies and strategies adapted by potential adversaries, as articulated in the Third Offset Strategy developed by the late Obama administration. It is becoming clear however, that a desire to innovate is not the same as actual innovation. Aslakson and Brown make the point that innovation is not simply technological development and identify what they believe is a crucial institutional component of military innovation in the U.S. Army.

Innovation is differentiated from other forms of change such as improvisation and adaptation by the scale, scope and impact of that value creation. Innovation is not about a new widget or process, but the decisive value created and the competitive advantage gained when that new widget or process is applied throughout the Army or joint force…

However, none of these inventions or activities can rise to the level of innovation unless there are skilled professionals within the Army who can convert these ideas into competitive advantage across the enterprise. That is the role of a colonel serving in a major command staff leadership assignment…

These leaders do not typically create the change. But they have the necessary institutional and operational expertise and experience, contacts, resources and risk tolerance to manage processes across the entire framework of doctrine, organization, training, materiel, leadership and education, personnel and facilities, converting invention into competitive advantage.

In his seminal book, The Evolution of Weapons and Warfare (Indianapolis, IN: The Bobbs-Merrill Company, Inc., 1980), Trevor Dupuy noted a pattern in the historical relationship between development of weapons of increasing lethality and their incorporation in warfare. He too noted that the crucial factor was not the technology itself, but the organizational approach to using it.

When a radically new weapon appears and is first adopted, it is inherently incongruous with existing weapons and doctrine. This is reflected in a number of ways; uncertainty and hesitation in coordination of the new weapon with earlier ones; inability to use it consistently, effectively, and flexibly in offensive action, which often leads to tactical stalemate; vulnerability of the weapon and of its users to hostile countermeasures; heavy losses incident to the employment of the new weapon, or in attempting to oppose it in combat. From this it is possible to establish the following criteria of assimilation:

  1. Confident employment of the weapon in accordance with a doctrine that assures its coordination with other weapons in a manner compatible with the characteristics of each.
  2. Consistently effective, flexible use of the weapon in offensive warfare, permitting full employment of the advantages of superior leadership and/or superior resources.
  3. Capability of dealing effectively with anticipated and unanticipated countermeasures.
  4. Sharp decline in casualties for those employing the weapon, often combined with a capability for inflicting disproportionately heavy losses on the enemy.

Based on his assessment of this historical pattern, Dupuy derived a set of preconditions necessary for a successful assimilation of new technology into warfare.

  1. An imaginative, knowledgeable leadership focused on military affairs, supported by extensive knowledge of, and competence in, the nature and background of the existing military system.
  2. Effective coordination of the nation’s economic, technological-scientific, and military resources.
    1. There must exist industrial or developmental research institutions, basic research institutions, military staffs and their supporting institutions, together with administrative arrangements for linking these with one another and with top decision-making echelons of government.
    2. These bodies must conduct their research, developmental, and testing activities according to mutually familiar methods so that their personnel can communicate, can be mutually supporting, and can evaluate each other’s results.
    3. The efforts of these institutions—in related matters—must be directed toward a common goal.
  3. Opportunity for battlefield experimentation as a basis for evaluation and analysis.

Does the U.S. defense establishment’s organizational and institutional approach to innovation meet these preconditions? Good question.

War By Numbers Published

Christopher A. Lawrence, War by Numbers Understanding Conventional Combat (Lincoln, NE: Potomac Books, 2017) 390 pages, $39.95

War by Numbers assesses the nature of conventional warfare through the analysis of historical combat. Christopher A. Lawrence (President and Executive Director of The Dupuy Institute) establishes what we know about conventional combat and why we know it. By demonstrating the impact a variety of factors have on combat he moves such analysis beyond the work of Carl von Clausewitz and into modern data and interpretation.

Using vast data sets, Lawrence examines force ratios, the human factor in case studies from World War II and beyond, the combat value of superior situational awareness, and the effects of dispersion, among other elements. Lawrence challenges existing interpretations of conventional warfare and shows how such combat should be conducted in the future, simultaneously broadening our understanding of what it means to fight wars by the numbers.

The book is available in paperback directly from Potomac Books and in paperback and Kindle from Amazon.

Human Factors In Warfare: Fatigue

Tom Lea, “The 2,000 Yard Stare” 1944 [Oil on canvas, 36 x 28 Life Collection of Art WWII, U.S. Army Center of Military History, Fort Belvoir, Virginia]

That idea that fatigue is a human factor in combat seems relatively uncontroversial. Military history is replete with examples of how the limits of human physical and mental endurance have affected the character of fighting and the outcome of battles. Perhaps the most salient aspect of military training is preparing soldiers to deal with the rigors of warfare.

Trevor Dupuy was aware that fatigue has a degrading effect on the effectiveness of troops in combat, but he never was able to study the topic specifically himself. He was aware of other examinations of historical experience that were relevant to the issue.

The effectiveness of a military force declines steadily every day that it is engaged in sustained combat. This is an indication that fear has a physical effect on human beings equitable with severe exertion. S.L.A. Marshall documented this extremely well in a report that he wrote a few years before he died. I shall shortly have more to say about S.L.A. Marshall…

An approximate value for the daily effect of fatigue upon the effectiveness of weapons employment emerged from a HERO study several years ago. There is no question that fatigue has a comparable degrading effect upon the ability of a force to advance. I know of no research to ascertain that effect. Until such research is performed, I have arbitrarily assumed that the degrading effect of fatigue upon advance rates is the same as its degrading effect upon weapons effectiveness. To those who might be shocked at such an assumption, my response is: We know there is an effect; it is better to use a crude approximation of that effect than to ignore it…

During World War II when Colonel S.L.A. Marshall was the Chief Historian of the US European Theater of Operations, he undertook a number of interviews of units just after they had been in combat. After the war, in his book Men Against Fire, Marshall asserted that his interviews revealed that only 15% of US infantry soldiers fired their small arms weapons in combat. This revelation created something of a sensation at the time.

It has since been demonstrated that Marshall did not really have solid, scientific data for his assertion. But those who criticize Marshall for unscholarly, unscientific work should realize that in private life he was an exceptionally good newspaper reporter. His conclusions, based upon his observations, may have been largely intuitive, but I am convinced that they were generally, if not specifically, sound…

One of the few examples of the use of military history in the West in recent years was an important study done at the British Defence Operational Analysis Establishment (DOAE) by David Rowland. An unclassified condensation of that study was published in the June 1986 issue of the Journal of the Royal United Services Institution (RUSI). The article, “Assessments of Combat Degradation,” demonstrates conclusively that, in historical combat, small arms weapons have had only one-seventh to one-tenth of their theoretical effectiveness. Rowland does not attempt to say why this is so, but it is interesting that his value of one-seventh is very close to the S. L. A. Marshall 15% figure. Both values translate into casualty effects very similar to those that have emerged from my own research.

The intent of this post is not to rehash the debate on Marshall. As Dupuy noted above, even if Marshall’s conclusions were not based on empirical evidence, his observations on combat were nevertheless on to something important. (Details on the Marshall debate can be easily found with a Google search. A brief discussion took place on the old TDI Forum in 2007.)

David Rowland also presented a paper on the same topic Dupuy referenced above at the Military Operations Research Society (MORS) MORIMOC II conference in 1989, “Assessment of Combat Performance With Small Arms” He later published a book detailing his research on the subject in 2006, The Stress of Battle: Quantifying Human Performance in Combat, which is very much worth tracking down and reading.

Dupuy provided a basic version of his theoretical combat exhaustion methodology on pages 223-224 in Numbers, Predictions and War: Using History to Evaluate Combat Factors and Predict the Outcome of Battles (Indianapolis; New York: The Bobbs-Merrill Co., 1979).

Rules For Exhaustion Rates, 20th Century*

  1. The exhaustion factor (ex) of a fresh unit is 1.0; this is the maximum ex value.
  2. At the conclusion of an engagement, a new ex factor will be calculated for each side.
  3. A unit in normal offensive or defensive combat has its ex factor reduced by .05 for each consecutive day of combat; the ex factor cannot be less than 0.5.
  4. An attacking unit opposed by delaying tactics has its ex factor reduced by 0.05 per day.
  5. A defending unit in delay posture neither loses nor gains in its ex factor.
  6. A withdrawing unit, not seriously engaged, has its ex factor augmented at the rate of 0.05 per day.
  7. An advancing unit in pursuit, and not seriously delayed, neither loses nor gains in its ex factor.
  8. For a unit in reserve, or in non-active posture, an exhaustion factor of less than 1.0 is augmented at the rate of .1 per day.
  9. When a unit in combat, or recently in combat, is reinforced by a unit at least half of its size (in numbers of men), it adopts the ex factor of the reinforcing unit or—if the ex factor of the reinforcing unit is the same or lower than that of the reinforced—both adopt an ex factor 0.1 higher than that of the reinforced unit at the time of reinforcement, save that an ex factor cannot be greater than 1.0.
  10. When a unit in combat, or recently in combat, is reinforced by a unit less than half its size, but not less than one quarter its size, augmentations or modifications of ex factors will be 0.5 times those provided for in paragraph 9, above. When the reinforcing unit is less than one-quarter the size of the reinforced unit, but not less than one-tenth its size, augmentations or modifications of ex factors will be 0.25 times those provided for in paragraph 9, above.

* Approximate reflection of preliminary QJM assessment of effects of casualty and fatigue, WWII engagements. These rates are for division or smaller size; for corps and larger units exhaustion rates are calculated for component divisions and smaller separate units.

EXAMPLES OF APPLICATION

  1. A division in continuous offensive combat for five days stays in the line in inactive posture for two days, then resumes the offensive:
    1. Combat exhaustion effect: 1 – (5 x .05) = 0.75;
    2. Recuperation effect: 75 + (2 x .l) = 0.95.
  2. A division in defensive posture for fifteen days is ordered to undertake a counterattack:
    1. Combat exhaustion effect: 1 – (15 x .05) =0.25; this is below the minimum ex factor, which therefore applies: 0.5;
    2. Recuperation effect: None; ex factor is 0.5.
  3. A division in offensive posture for three days is reinforced by two fresh brigades:
    1. Combat exhaustion effect: 1 – (3 x .05) = 0.85;
    2. Reinforcement effect: Augmentation from 0.85 to 1.0.
  4. A division in offensive posture for three days is reinforced by one fresh brigade:
    1. Combat exhaustion effect: 1 – (3 x .05) = 0.85;
    2. Reinforcement effect: 0.5 x augmentation from 0.85 to 1 = 0.93.

Human Factors In Warfare: Combat Intensity

Battle of Spotsylvania by Thure de Thulstrup (1886) [Library of Congress]

Trevor Dupuy considered intensity to be another combat phenomena influenced by human factors. The variation in the intensity of combat is an aspect of battle that is widely acknowledged but little studied.

No one who has paid any attention at all to historical combat statistics can have failed to notice that some battles have been very bloody and hard-fought, while others—often under circumstances superficially similar—have reached a conclusion with relatively light casualties on one or both sides. I don’t believe that it is terribly important to find a quantitative reason for such differences, mainly because I don’t think there is any quantitative reason. The differences are usually due to such things as the general circumstances existing when the battles are fought, the personalities of the commanders, and the natures of the missions or objectives of one or both of the hostile forces, and the interactions of these personalities and missions.

From my standpoint the principal reason for trying to quantify the intensity of a battle is for purposes of comparative analysis. Just because casualties are relatively low on one or both sides does not necessarily mean that the battle was not intensive. And if the casualty rates are misinterpreted, then the analysis of the outcome can be distorted. For instance, a battle fought on a flat plain between two military forces will almost invariably have higher casualty rates for both sides than will a battle between those same two forces in mountainous terrain. A battle between those two forces in a heavy downpour, or in cold, wintry weather, will have lower casualties than when the forces are opposed to each other, under otherwise identical circumstances, in good weather. Casualty rates for small forces in a given set of circumstances are invariably higher than the rates for larger forces under otherwise identical circumstances.

If all of these things are taken into consideration, then it is possible to assess combat intensity fairly consistently. The formula I use is as follows:

CI = CR / (sz’ x rc x hc)

When:     CI = Combat Intensity Measure

CR = Casualty rate in percent per day

sz’ = Square root of sz, a factor reflecting the effect of size upon casualty rates, derived from historical experience

rc = The effect of terrain on casualty rates, derived from historical experience

hc = The effect of weather on casualty rates, derived from historical experience

I then (somewhat arbitrarily) identify seven levels of intensity:

0.00 to 0.49 Very low intensity (1)

0.50 to 0.99 Low intensity (56)

1.00 to 1.99 Normal intensity (213)

2.00 to 2.99 High intensity (101)

3.00 to 3.99 Very high intensity (30)

4.00 to 5.00 Extremely high intensity (17)

Over 5.00 Catastrophic outcome (20)

The numbers in parentheses show the distribution of intensity on each side in 219 battles in DMSi’s QJM data base. The catastrophic battles include: the Russians in the Battles of Tannenberg and Gorlice Tarnow on the Eastern Front in World War I; the Russians on the first day of the Battle of Kursk in July 1943; a British defeat in Malaya in December, 1941; and 16 Japanese defeats on Okinawa. Each of these catastrophic instances, quantitatively identified, is consistent with a qualitative assessment of the outcome.

[UPDATE]

As Clinton Reilly pointed out in the comments, this works better when the equation variables are provided. These are from Trevor N. Dupuy, Attrition Forecasting Battle Casualties and Equipment Losses in Modern War (Fall Church, VA: NOVA Publications, 1995), pp. 146, 147, 149.

Human Factors In Warfare: Surprise

By John Trumbull (1756-1843) – Yale University Art Gallery – The Death of Paulus Aemilius at the Battle of Cannae, Public Domain

Trevor Dupuy considered surprise to be one of the most important human factors on the battlefield.

A military force that is surprised is severely disrupted, and its fighting capability is severely degraded. Surprise is usually achieved by the side that has the initiative, and that is attacking. However, it can be achieved by a defending force. The most common example of defensive surprise is the ambush.

Perhaps the best example of surprise achieved by a defender was that which Hannibal gained over the Romans at the Battle of Cannae, 216 BC, in which the Romans were surprised by the unexpected defensive maneuver of the Carthaginians. This permitted the outnumbered force, aided by the multiplying effect of surprise, to achieve a double envelopment of their numerically stronger force.

It has been hypothesized, and the hypothesis rather conclusively substantiated, that surprise can be quantified in terms of the enhanced mobility (quantifiable) which surprise provides to the surprising force, by the reduced vulnerability (quantifiable) of the surpriser, and the increased vulnerability (quantifiable) of the side that is surprised.

I have written in detail previously about Dupuy’s treatment of surprise. He cited it as one of his timeless verities of combat.  As one of the most powerful force multipliers available in battle, he calculated that achieving complete surprise could more than double the combat power of a force.

The U.S. Army’s Stryker Conundrum

Soldiers, of the 1st Stryker Brigade Combat Team, 4th Infantry Division, tactically move a Stryker over the Mojave Desert during Decisive Action Rotation 15-10 at the National Training Center on Fort Irwin, Calif., Sept. 24, 2015. The Stryker and other ground combat vehicles are undergoing a number of upgrades, according to officials. (Photo Credit: Sgt. William Howard)

As part of an initiative to modernize the U.S. Army in the late 1990s, then-Chief of Staff General Eric Shinseki articulated a need for combat units that were more mobile and rapidly deployable than the existing heavy armor brigades. This was the genesis of the Army’s medium-weight Stryker combat vehicle and the Stryker Brigade Combat Teams (SBCTs).

Since the Stryker’s introduction in 2002, SBCTs have participated successfully in U.S. expeditionary operations in Iraq and Afghanistan, validating for many the usefulness of Shinseki’s original medium-weight armor concept. However, changes in the strategic landscape and advances in technology and operational doctrine by potential adversaries are calling the medium armor concept back into question.

Medium armor faces the same conundrum that currently confronts the U.S. Army in general: should it optimize to conduct wide area security operations (which is the most likely type of future conflict) or combined arms maneuver (the most dangerous potential future conflict), or should it continue to hedge against strategic uncertainty by fielding a balanced, general purpose force which does a tolerable job of both, as it does now?

The Problem

In the current edition of Military Review, U.S. Army Captain Matthew D. Allgeyer presents an interesting critique of the Army’s existing medium-weight armor concept. He asserts that it is “is suffering from a lack of direction and focus…” Several improvements for the Stryker have been proposed based on perceptions of evolving Russian military capabilities, namely “a modern heavy-force threat supported by aviation assets.” The problem, according to Allgeyer, is that

The SBCT community wants all the positive aspects of a light force: lower cost, a small tooth-to-tail ratio, greater operational-level speed, etc. But, it also wants the ability to confront a heavy-armored force on its own terms without having to adopt the cost, support, and deployment time required by an armored force. Since these two ideas are mutuality exclusive, we have been forced to adopt a piecemeal response to shortcomings identified during training and training center rotations.

Even if the currently proposed improvements are adopted however, Allgeyer argues that updated Strykers would only provide the U.S. with a medium weight armor capability analogous to the 1960’s era Soviet motor-rifle regiment, a doctrinal step backward.

Allgeyer identifies the SBCT’s biggest weaknesses as a lack of firepower capable of successfully engaging enemy heavy armor and the absence of an organic air defense capability. Neither of these is a problem in wide area security missions such as peacekeeping or counterinsurgency, where deployability and mobility are priority considerations. However, both shortcomings are critical disadvantages in combined arms maneuver scenarios, particularly against Russian or Russian-equipped opposing forces.

Potential Solutions

These observations are not new. A 2001 TDI study of the historical effectiveness of lighter-weight armor pointed out its vulnerability to heavy armored forces, but also its utility in stability and contingency operations. The Russians long ago addressed these issues with their Bronetransporter (BTR)-equipped motor-rifle regiments by adding organic tank battalions to them, incorporating air defense platoons in each battalion, and upgunning the BTRs with 30mm cannons and anti-tank guided missiles (ATGMs).

The U.S. Army has similar solutions available. It has already sought to add 30mm cannons and TOW-2 ATGMs to the Styker. The Mobile Protected Firepower program that will provide a company of light-weight armored vehicles with high-caliber cannons to each infantry brigade combat team could easily be expanded to add a company or battalion of such vehicles to the SBCT. No proposals exist for improving air defense capabilities, but this too could be addressed.

Allgeyer agrees with the need for these improvements, but he is dissatisfied with the Army “simply reinventing on its own the wheel Russia made a long time ago.”  His proposed “solution is a radical restructuring of thought around the Stryker concept.” He advocates ditching the term “Stryker” in favor of the more generic “medium armor” to encourage doctrinal thinking about the concept instead of the platform. Medium armor advocates should accept the need for a combined arms solution to engaging adversary heavy forces and incorporate more joint training into their mission-essential task lists. The Army should also do a better job of analyzing foreign medium armor platforms and doctrine to see what may be appropriate for U.S. adoption.

Allgeyer’s proposals are certainly worthy, but they may not add up to the radical restructuring he seeks. Even if adopted, they are not likely to change the fundamental characteristics of medium armor that make it more suitable to the wide area security mission than to combined arms maneuver. Optimizing it for one mission will invariably make it less useful for the other. Whether or not this is a wise choice is also the same question the Army must ponder with regard to its overall strategic mission.