The U.S. Army 333rd Field Artillery Battalion (Colored) in Normandy, July 1944 (US Army Photo/Tom Gregg)
[This series of posts is adapted from the article “Artillery Effectiveness vs. Armor,” by Richard C. Anderson, Jr., originally published in the June 1997 edition of the International TNDM Newsletter.]
[11] Five of the 13 counted as unknown were penetrated by both armor piercing shot and by infantry hollow charge weapons. There was no evidence to indicate which was the original cause of the loss.
[12] From ORS Report No. 17
[13] From ORS Report No. 15. The “Pocket” was the area west of the line Falaise-Argentan and east of the line Vassy-Gets-Domfront in Normandy that was the site in August 1944 of the beginning of the German retreat from France. The German forces were being enveloped from the north and south by Allied ground forces and were under constant, heavy air attack.
German Army 150mm heavy field howitzer 18 L/29.5 battery. [Panzer DB/Pinterest]
[This series of posts is adapted from the article “Artillery Effectiveness vs. Armor,” by Richard C. Anderson, Jr., originally published in the June 1997 edition of the International TNDM Newsletter.]
Curiously, at Kursk, in the case where the highest percent loss was recorded, the German forces opposing the Soviet 1st Tank Army—mainly the XLVIII Panzer Corps of the Fourth Panzer Army—were supported by proportionately fewer artillery pieces (approximately 56 guns and rocket launchers per division) than the US 1st Infantry Division at Dom Bütgenbach (the equivalent of approximately 106 guns per division)[4]. Nor does it appear that the German rate of fire at Kursk was significantly higher than that of the American artillery at Dom Bütgenbach. On 20 July at Kursk, the 150mm howitzers of the 11th Panzer Division achieved a peak rate of fire of 87.21 rounds per gum. On 21 December at Dom Bütgenbach, the 155mm howitzers of the 955th Field Artillery Battalion achieved a peak rate of fire of 171.17 rounds per gun.[5]
NOTES
[4] The US artillery at Dom Bütgenbach peaked on 21 December 1944 when a total of 210 divisional and corps pieces fired over 10,000 rounds in support of the 1st Division’s 26th Infantry.
[5] Data collected on German rates of fire are fragmentary, but appear to be similar to that of the American Army in World War ll. An article on artillery rates of fire that explores the data in more detail will be forthcoming in a future issue of this newsletter. [NOTE: This article was not completed or published.]
Notes to Table I.
[8] The data were found in reports of the 1st Tank Army (Fond 299, Opis‘ 3070, Delo 226). Obvious math errors in the original document have been corrected (the total lost column did not always agree with the totals by cause). The total participated column evidently reflected the starting strength of the unit, plus replacement vehicles. “Burned'” in Soviet wartime documents usually indicated a total loss, however it appears that in this case “burned” denoted vehicles totally lost due to direct fire antitank weapons. “Breakdown” apparently included both mechanical breakdown and repairable combat damage.
[9] Note that the brigade report (Fond 3304, Opis‘ 1, Delo 24) contradicts the army report. The brigade reported that a total of 28 T-34s were lost (9 to aircraft and 19 to “artillery”) and one T-60 was destroyed by a mine. However, this report was made on 11 July, during the battle, and may not have been as precise as the later report recorded by 1st Tank Army. Furthermore, it is not as clear in the brigade report that “artillery” referred only to indirect fire HE and not simply lo both direct and indirect fire guns.
A U.S. M1 155mm towed artillery piece being set up for firing during the Battle of the Bulge, December 1944.
[This series of posts is adapted from the article “Artillery Effectiveness vs. Armor,” by Richard C. Anderson, Jr., originally published in the June 1997 edition of the International TNDM Newsletter.]
The effectiveness of artillery against exposed personnel and other “soft” targets has long been accepted. Fragments and blast are deadly to those unfortunate enough to not be under cover. What has also long been accepted is the relative—if not total—immunity of armored vehicles when exposed to shell fire. In a recent memorandum, the United States Army Armor School disputed the results of tests of artillery versus tanks by stating, “…the Armor School nonconcurred with the Artillery School regarding the suppressive effects of artillery…the M-1 main battle tank cannot be destroyed by artillery…”
This statement may in fact be true,[1] if the advancement of armored vehicle design has greatly exceeded the advancement of artillery weapon design in the last fifty years. [Original emphasis] However, if the statement is not true, then recent research by TDI[2] into the effectiveness of artillery shell fire versus tanks in World War II may be illuminating.
The TDI search found that an average of 12.8 percent of tank and other armored vehicle losses[3] were due to artillery fire in seven eases in World War II where the cause of loss could be reliably identified. The highest percent loss due to artillery was found to be 14.8 percent in the case of the Soviet 1st Tank Army at Kursk (Table II). The lowest percent loss due to artillery was found to be 5.9 percent in the case of Dom Bütgenbach (Table VIII).
The seven cases are split almost evenly between those that show armor losses to a defender and those that show losses to an attacker. The first four cases (Kursk, Normandy l. Normandy ll, and the “Pocket“) are engagements in which the side for which armor losses were recorded was on the defensive. The last three cases (Ardennes, Krinkelt. and Dom Bütgenbach) are engagements in which the side for which armor losses were recorded was on the offensive.
Four of the seven eases (Normandy I, Normandy ll, the “Pocket,” and Ardennes) represent data collected by operations research personnel utilizing rigid criteria for the identification of the cause of loss. Specific causes of loss were only given when the primary destructive agent could be clearly identified. The other three cases (Kursk, Krinkelt, and Dom Bütgenbach) are based upon combat reports that—of necessity—represent less precise data collection efforts.
However, the similarity in results remains striking. The largest identifiable cause of tank loss found in the data was, predictably, high-velocity armor piercing (AP) antitank rounds. AP rounds were found to be the cause of 68.7 percent of all losses. Artillery was second, responsible for 12.8 percent of all losses. Air attack as a cause was third, accounting for 7.4 percent of the total lost. Unknown causes, which included losses due to hits from multiple weapon types as well as unidentified weapons, inflicted 6.3% of the losses and ranked fourth. Other causes, which included infantry antitank weapons and mines, were responsible for 4.8% of the losses and ranked fifth.
NOTES
[1] The statement may be true, although it has an “unsinkable Titanic,” ring to it. It is much more likely that this statement is a hypothesis, rather than a truism.
[2] As pan of this article a survey of the Research Analysis Corporation’s publications list was made in an attempt to locate data from previous operations research on the subject. A single reference to the study of tank losses was found. Group 1 Alvin D. Coox and L. Van Loan Naisawald, Survey of Allied Tank Casualties in World War II, CONFIDENTIAL ORO Report T-117, 1 March 1951.
[3] The percentage loss by cause excludes vehicles lost due to mechanical breakdown or abandonment. lf these were included, they would account for 29.2 percent of the total lost. However, 271 of the 404 (67.1%) abandoned were lost in just two of the cases. These two cases (Normandy ll and the Falaise Pocket) cover the period in the Normandy Campaign when the Allies broke through the German defenses and began the pursuit across France.
A 155mm Paladin howitzer with 1st Battery, 10th Field Artillery, 3rd Brigade Combat Team, Task Force Liberty stands ready for a fire mission at forward operating base Gabe April 16, 2005. [U.S. Department of Defense/DVIDS]
Strategic strike? The Army needs to worry about increasing tubes (more than just 155s) and less on fancy munitions. Quantity is a quality all its own in tactical and operational level fires.
— Schrödinger’s Strategist (@barefootboomer) October 1, 2018
@barefootboomer makes a fair point. It appears that the majority of the U.S. Army’s current efforts to improve its artillery capabilities are aimed at increasing lethality and capability of individual systems, but not actually adding additional guns to the force structure.
Are Army combat units undergunned in the era of multi-domain battle? The Mobile Protected Firepower program is intended to provide additional light tanks high-caliber direct fire guns to the Infantry Brigade Combat Teams. In his recent piece at West Point’s Modern War Institute blog, Captain Brandon Morgan recommended increasing the proportion of U.S. corps rocket artillery to tube artillery systems from roughly 1:4 to something closer to the current Russian Army ratio of 3:4.
Should the Army be adding other additional direct or indirect fires systems to its combat forces? What types and at what levels? Direct or indirect fire? More tubes per battery? More batteries? More battalions?
What do you think?
UPDATE: I got a few responses to my queries. The balance reflected this view:
Quantity has a quality all its own until it’s outranged, then it has none at all. The Army shouldn’t seek range, precision, responsiveness, and capacity in isolation, but holistically.
More is always better when it comes to Indirect fires. We’ve shifted to reliance on Joint fires and reduced our organic capability, in number of tubes and battalions. All our potential peer/near-peer adversaries outrange and out gun us. We need to fix that.
— Schrödinger’s Strategist (@barefootboomer) October 5, 2018
There were not many specific suggestions about changes to the existing forces structure, except for this one:
More mortars of all types (light, medium, heavy) at battalion and below.
Are there any other thoughts or suggestions out there about this, or is the consensus that the Army is already pretty much on the right course toward fixing its fires problems?
Soldiers fire an M777A2 howitzer while supporting Iraqi security forces near al-Qaim, Iraq, Nov. 7, 2017, as part of the operation to defeat the Islamic State of Iraq and Syria. [Spc. William Gibson/U.S. Army]
The U.S. Army Long Range Fires Cross Functional Team
A recent article in Army Times by Todd South looked at some of the changes being implemented by the U.S. Army cross functional team charged with prioritizing improvements in the service’s long range fires capabilities. To meet a requirement to double the ranges of its artillery systems within five years, “the Army has embarked upon three tiers of focus, from upgrading old school artillery cannons, to swapping out its missile system to double the distance it can fire, and giving the Army a way to fire surface-to-surface missiles at ranges of 1,400 miles.”
The Extended Range Cannon Artillery program is working on rocket assisted munitions to double the range of the Army’s workhouse 155mm guns to 24 miles, with some special rounds capable of reaching targets up to 44 miles away. As I touched on recently, the Army is also looking into ramjet rounds that could potentially increase striking range to 62 miles.
To develop the capability for even longer range fires, the Army implemented a Strategic Strike Cannon Artillery program for targets up to nearly 1,000 miles, and a Strategic Fires Missile effort enabling targeting out to 1,400 miles.
The Army is also emphasizing retaining trained artillery personnel and an improved training regime which includes large-scale joint exercises and increased live-fire opportunities.
Increasing the proportion of U.S. corps rocket artillery to tube artillery systems from roughly 1:4 to something closer to the current Russian Army ratio of 3:4.
Fielding a tube artillery system capable of meeting or surpassing the German-made PZH 2000, which can strike targets out to 30 kilometers with regular rounds, sustain a firing rate of 10 rounds per minute, and strike targets with five rounds simultaneously.
Focus on integrating tube and rocket artillery with a multi-domain, joint force to enable the destruction of the majority of enemy maneuver forces before friendly ground forces reach direct-fire range.
Allow tube artillery to be task organized below the brigade level to provide indirect fires capabilities to maneuver battalions, and make rocket artillery available to division and brigade commanders. (Morgan contends that the allocation of indirect fires capabilities to maneuver battalions ended with the disbanding of the Army’s armored cavalry regiments in 2011.)
Increase training in use of unmanned aerial vehicle (UAV) assets at the tactical level to locate, target, and observe fires.
U.S. Air Force and U.S. Navy Face Long Range Penetrating Strike Challenges
The Army’s emphasis on improving long range fires appears timely in light of the challenges the U.S. Air Force and U.S. Navy face in conducting long range penetrating strikes mission in the A2/AD environment. A fascinating analysis by Jerry Hendrix for the Center for a New American Security shows the current strategic problems stemming from U.S. policy decisions taken in the early 1990s following the end of the Cold War.
In an effort to generate a “peace dividend” from the fall of the Soviet Union, the Clinton administration elected to simplify the U.S. military force structure for conducting long range air attacks by relieving the Navy of its associated responsibilities and assigning the mission solely to the Air Force. The Navy no longer needed to replace its aging carrier-based medium range bombers and the Air Force pushed replacements for its aging B-52 and B-1 bombers into the future.
Both the Air Force and Navy emphasized development and acquisition of short range tactical aircraft which proved highly suitable for the regional contingencies and irregular conflicts of the 1990s and early 2000s. Impressed with U.S. capabilities displayed in those conflicts, China, Russia, and Iran invested in air defense and ballistic missile technologies specifically designed to counter American advantages.
The U.S. now faces a strategic environment where its long range strike platforms lack the range and operational and technological capability to operate within these AS/AD “bubbles.” The Air Force has far too few long range bombers with stealth capability, and neither the Air Force nor Navy tactical stealth aircraft can carry long range strike missiles. The missiles themselves lack stealth capability. The short range of the Navy’s aircraft and insufficient numbers of screening vessels leave its aircraft carriers vulnerable to ballistic missile attack.
Remedying this state of affairs will take time and major investments in new weapons and technological upgrades. However, with certain upgrades, Hendrix sees the current Air Force and Navy force structures capable of providing the basis for a long range penetrating strike operational concept effective against A2/AD defenses. The unanswered question is whether these upgrades will be implemented at all.
Nammo’s new 155mm Solid Fuel Ramjet projectile [The Drive]
From the “Build A Better Mousetrap” files come a couple of new developments in precision fires technology. The U.S. Army’s current top modernization priority is improving its long-range precision fires capabilities.
Joseph Trevithick reports in The Drive that Nammo, a Norwegian/Finnish aerospace and defense company, recently revealed that it is developing a solid-fueled, ramjet-powered, precision projectile capable of being fired from the ubiquitous 155mm howitzer. The projectile, which is scheduled for live-fire testing in 2019 or 2020, will have a range of more than 60 miles.
The Army’s current self-propelled and towed 155mm howitzers have a range of 12 miles using standard ammunition, and up to 20 miles with rocket-powered munitions. Nammo’s ramjet projectile could effectively double that, but the Army is also looking into developing a new 155mm howitzer with a longer barrel that could fully exploit the capabilities of Nammo’s ramjet shell and other new long-range precision munitions under development.
Anna Ahronheim has a story in The Jerusalem Post about a new weapon developed by the Israeli Rafael Advanced Defense Systems Ltd. called the FireFly. FireFly is a small, three-kilogram, loitering munition designed for use by light ground maneuver forces to deliver precision fires against enemy forces in cover. Similar to a drone, FireFly can hover for up to 15 minutes before delivery.
In a statement, Rafael claimed that “Firefly will essentially eliminate the value of cover and with it, the necessity of long-drawn-out firefights. It will also make obsolete the old infantry tactic of firing and maneuvering to eliminate an enemy hiding behind cover.”
Nammo and Rafael have very high hopes for their wares:
“This [155mm Solid Fuel Ramjet] could be a game-changer for artillery,” according to Thomas Danbolt, Vice President of Nammo’s Large Caliber Ammunitions division.
“The impact of FireFly on the infantry is revolutionary, fundamentally changing small infantry tactics,” Rafael has asserted.
Expansive claims for the impact of new technology are not new, of course. Oribtal ATK touted its XM25 Counter Defilade Target Engagement (CDTE) precision-guided grenade launcher along familiar lines, claiming that “The introduction of the XM25 is akin to other revolutionary systems such as the machine gun, the airplane and the tank, all of which changed battlefield tactics.”
Similar in battlefield effect to the FireFly, the Army cancelled its contract for the XM25 in 2017 after disappointing results in field tests.
UPDATE: For clarity’s sake, let me re-up my contrarian take:
U.S. Marines from the The 11th MEU fire their M777 Lightweight 155mm Howitzer during Exercise Alligator Dagger, Dec. 18, 2016. (U.S. Marine Corps/Lance Cpl. Zachery C. Laning/Military.com)
According to Army historian Luke O’Brian, the Fiscal Year 2019 Defense budget includes funds to buy 28,737 XM1156 Precision Guided Kit (PGK) 155mm howitzer munitions, which includes replacements for the 6,269 rounds expended during Operation INHERENT RESOLVE. O’Brian also notes that the Army will also buy 2,162 M982 Excalibur 155mm rounds in 2019 and several hundred each in following years.
While the numbers appear large at first glance, data on U.S. artillery expenditures in Operation DESERT STORM and IRAQI FREEDOM (also via Luke O’Brian) shows just how much the volume of long-range fires has changed just since 1991. For the U.S. at least, precision fires have indeed replaced mass fires on the battlefield.
The U.S. National Academies of Sciences, Engineering, and Medicine has issued a new report emphasizing the need for developing countermeasures against multiple small unmanned aerial aircraft systems (sUASs) — organized in coordinated groups, swarms, and collaborative groups — which could be used much sooner than the U.S. Army anticipates. [There is a summary here.]
National Defense University’s Frank Hoffman has a very good piece in the current edition of Parameters, “Will War’s Nature Change in the Seventh Military Revolution?,” that explores the potential implications of the combinations of robotics, artificial intelligence, and deep learning systems on the character and nature of war.
North Korea has invested heavily in its arsenal of conventional artillery. Other than nuclear weapons, this capability likely poses the greatest threat to South Korean security, particularly given the vulnerability of the capital Seoul, a city of nearly 10 million that lies just 35 miles south of the demilitarized zone.
The artillery defense system the South Korean Joint Chiefs seek to develop is not intended to protect civilian areas, however. It would be designed to shield critical command-and-control and missile defense sites. They already considered and rejected buying Israel’s existing Iron Dome missile defense system as inadequate to the magnitude of the threat.
As Panda pointed out, the challenges are formidable for development an artillery defense system capable of effectively countering North Korean capabilities.
South Korea would need to be confident that it would be able to maintain an acceptable intercept rate against the incoming projectiles—a task that may require a prohibitively large investment in launchers and interceptors. Moreover, the battle management software required for a system like this may prove to be exceptionally complex as well. Existing missile defense systems can already have their systems overwhelmed by multiple targets.
It is likely that there will be broader interest in South Korean progress in this area (Iron Dome is a joint effort by the Israelis and Raytheon). Chinese and Russian long-range precision fires capabilities are bulwarks of the anti-access/area denial strategies the U.S. military is currently attempting to overcome via the Third Offset Strategy and multi-domain battle initiatives.
The update is the result of the initial round of work between the U.S. Army and U.S. Air Force to redefine the scope of the multi-domain battlespace for the Joint Force. More work will be needed to refine the concept, but it shows remarkable cooperation in forging a common warfighting perspective between services long-noted for their independent thinking.
What difference can it make if those designing Multi-Domain Battle are acting on possibly the wrong threat diagnosis? Designing a solution for a misdiagnosed problem can result in the inculcation of a way of war unsuited for the wars of the future. One is reminded of the French Army during the interwar period. No one can accuse the French of not thinking seriously about war during these years, but, in the doctrine of the methodical battle, they got it wrong and misread the opportunities presented by mechanisation. There were many factors contributing to France’s defeat, but at their core was a misinterpretation of the art of the possible and a singular focus on a particular way of war. Shaping Multi-Domain Battle for the wrong problem may see the United States similarly sow the seeds for a military disaster that is avoidable.
He suggests that it would be wise for U.S. doctrine writers to take a more considered look at potential implications before venturing too far ahead with specific solutions.