Tag lethality

The Principle Of Mass On The Future Battlefield

Men of the U.S. Army 369th Infantry Regiment “Harlem’s Hellfighters,”in action at Séchault on September 29, 1918 during the Meuse-Argonne Offensive. [Wikimedia]

Given the historical trend toward battlefield dispersion as a result of the increasing lethality of weapons, how will the principle of mass apply in future warfare? I have been wondering about this for a while in the context of the two principle missions the U.S. Army must plan and prepare for, combined arms maneuver and wide area security. As multi-domain battle advocates contend, future combat will place a premium on smaller, faster, combat formations capable of massing large amounts of firepower. However, wide area security missions, such as stabilization and counterinsurgency, will continue to demand significant numbers of “boots on the ground,” the traditional definition of mass on the battlefield. These seemingly contradictory requirements are contributing to the Army’s ongoing “identity crisis” over future doctrine, training, and force structure in an era of budget austerity and unchanging global security responsibilities.

Over at the Australian Army Land Power Forum, Lieutenant Colonel James Davis addresses the question generating mass in combat in the context of the strategic challenges that army faces. He cites traditional responses by Western armies to this problem, “Regular and Reserve Force partnering through a standing force generation cycle, indigenous force partnering through deployed training teams and Reserve mobilisation to reconstitute and regenerate deployed units.”

Davis also mentions AirLand Battle and “blitzkrieg” as examples of tactical and operational approaches to limiting the ability of enemy forces to mass on the battlefield. To this he adds “more recent operational concepts, New Generation Warfare and Multi Domain Battle, [that] operate in the air, electromagnetic spectrum and cyber domain and to deny adversary close combat forces access to the battle zone.” These newer concepts use Cyber Electromagnetic Activities (CEMA), Information Operations, long range Joint Fires, and Robotic and Autonomous systems (RAS) to attack enemy efforts to mass.

The U.S. Army is moving rapidly to develop, integrate and deploy these capabilities. Yet, however effectively new doctrine and technology may influence mass in combined arms maneuver combat, it is harder to see how they can mitigate the need for manpower in wide area security missions. Some countries may have the strategic latitude to emphasize combined arms maneuver over wide area security, but the U.S. Army cannot afford to do so in the current security environment. Although conflicts emphasizing combined arms maneuver may present the most dangerous security challenge to the U.S., contingencies involving wide area security are far more likely.

How this may be resolved is an open question at this point in time. It is also a demonstration as to how tactical and operational considerations influence strategic options.

The Historical Combat Effectiveness of Lighter-Weight Armored Forces

A Stryker Infantry Carrier Vehicle-Dragoon fires 30 mm rounds during a live-fire demonstration at Aberdeen Proving Ground, Md., Aug. 16, 2017. Soldiers with 2nd Cavalry Regiment spent six weeks at Aberdeen testing and training on the new Stryker vehicle and a remote Javelin system, which are expected to head to Germany early next year for additional user testing. (Photo Credit: Sean Kimmons)

In 2001, The Dupuy Institute conducted a study for the U.S. Army Center for Army Analysis (CAA) on the historical effectiveness of lighter-weight armored forces. At the time, the Army had developed a requirement for an Interim Armored Vehicle (IAV), lighter and more deployable than existing M1 Abrams Main Battle Tank and the M2 Bradley Infantry Fighting Vehicle, to form the backbone of the future “Objective Force.” This program would result in development of the Stryker Infantry Fighting Vehicle.

CAA initiated the TDI study at the request of Walter W. “Don” Hollis, then the Deputy Undersecretary of the Army for Operations Research (a position that was eliminated in 2006.) TDI completed and submitted “The Historical Combat Effectiveness of Lighter-Weight Armored Forces” to CAA in August 2001. It examined the effectiveness of light and medium-weight armored forces in six scenarios:

  • Conventional conflicts against an armor supported or armor heavy force.
  • Emergency insertions against an armor supported or armor heavy force.
  • Conventional conflict against a primarily infantry force (as one might encounter in sub-Saharan Africa).
  • Emergency insertion against a primarily infantry force.
  • A small to medium insurgency (includes an insurgency that develops during a peacekeeping operation).
  • A peacekeeping operation or similar Operation Other Than War (OOTW) that has some potential for violence.

The historical data the study drew upon came from 146 cases of small-scale contingency operations; U.S. involvement in Vietnam; German counterinsurgency operations in the Balkans, 1941-1945; the Philippines Campaign, 1941-42; the Normandy Campaign, 1944; the Korean War 1950-51; the Persian Gulf War, 1990-91; and U.S. and European experiences with light and medium-weight armor in World War II.

The major conclusions of the study were:

Small Scale Contingency Operations (SSCOs)

  1. Implications for the Interim Armored Vehicle (IAV) Family of Vehicles. It would appear that existing systems (M-2 and M-3 Bradley and M-113) can fulfill most requirements. Current plans to develop an advanced LAV-type vehicle may cover almost all other shortfalls. Mine protection is a design feature that should be emphasized.
  2. Implications for the Interim Brigade Combat Team (IBCT). The need for armor in SSCOs that are not conventional or closely conventional in nature is limited and rarely approaches the requirements of a brigade-size armored force.

Insurgencies

  1. Implications for the Interim Armored Vehicle (IAV) Family of Vehicles. It would appear that existing systems (M-2 and M-3 Bradley and M-113) can fulfill most requirements. The armor threat in insurgencies is very limited until the later stages if the conflict transitions to conventional war. In either case, mine protection is a design feature that may be critical.
  2. Implications for the Interim Brigade Combat Team (IBCT). It is the nature of insurgencies that rapid deployment of armor is not essential. The armor threat in insurgencies is very limited until the later stages if the conflict transitions to a conventional war and rarely approaches the requirements of a brigade-size armored force.

Conventional Warfare

Conventional Conflict Against An Armor Supported Or Armor Heavy Force

  1. Implications for the Interim Armored Vehicle (IAV) Family of Vehicles. It may be expected that opposing heavy armor in a conventional armor versus armor engagement could significantly overmatch the IAV. In this case the primary requirement would be for a weapon system that would allow the IAV to defeat the enemy armor before it could engage the IAV.
  2. Implications for the Interim Brigade Combat Team (IBCT). The IBCT could substitute as an armored cavalry force in such a scenario.

Conventional Conflict Against A Primarily Infantry Force

  1. Implications for the Interim Armored Vehicle (IAV) Family of Vehicles. This appears to be little different from those conclusions found for the use of armor in SSCOs and Insurgencies.
  2. Implications for the Interim Brigade Combat Team (IBCT). The lack of a major armor threat will make the presence of armor useful.

Emergency Insertion Against An Armor Supported Or Armor Heavy Force

  1. Implications for the Interim Armored Vehicle (IAV) Family of Vehicles. It appears that the IAV may be of great use in an emergency insertion. However, the caveat regarding the threat of being overmatched by conventional heavy armor mentioned above should not be ignored. In this case the primary requirement would be for a weapon system that would allow the IAV to defeat the enemy armor before it could engage the IAV.
  2. Implications for the Interim Brigade Combat Team (IBCT). Although the theoretical utility of the IBCT in this scenario may be great it should be noted that The Dupuy Institute was only able to find one comparable case of such a deployment which resulted in actual conflict in US military history in the last 60 years (Korea, 1950). In this case the effect of pushing forward light tanks into the face of heavier enemy tanks was marginal.

Emergency Insertion Against A Primarily Infantry Force

  1. Implications for the Interim Armored Vehicle (IAV) Family of Vehicles. The lack of a major armor threat in this scenario will make the presence of any armor useful. However, The Dupuy Institute was unable to identify the existence of any such cases in the historical record.
  2. Implications for the Interim Brigade Combat Team (IBCT). The lack of a major armor threat will make the presence of any armor useful. However, The Dupuy Institute was unable to identify the existence of any such cases in the historical record.

Other Conclusions

Wheeled Vehicles

  1. There is little historical evidence one way or the other establishing whether wheels or tracks are the preferable feature of AFVs.

Vehicle Design

  1. In SSCOs access to a large-caliber main gun was useful for demolishing obstacles and buildings. This capability is not unique and could be replaced by AT missiles armed CFVs, IFVs and APCs.
  2. Any new lighter tank-like vehicle should make its gun system the highest priority, armor secondary and mobility and maneuverability tertiary.
  3. Mine protection should be emphasized. Mines were a major threat to all types of armor in many scenarios. In many SSCOs it was the major cause of armored vehicle losses.
  4. The robust carrying capacity offered by an APC over a tank is an advantage during many SSCOs.

Terrain Issues

  1. The use of armor in urban fighting, even in SSCOs, is still limited. The threat to armor from other armor in urban terrain during SSCOs is almost nonexistent. Most urban warfare armor needs, where armor basically serves as a support weapon, can be met with light armor (CFVs, IFVs, and APCs).
  2. Vehicle weight is sometimes a limiting factor in less developed areas. In all cases where this was a problem, there was not a corresponding armor threat. As such, in almost all cases, the missions and tasks of a tank can be fulfilled with other light armor (CFVs, IFVs, or APCs).
  3. The primary terrain problem is rivers and flooded areas. It would appear that in difficult terrain, especially heavily forested terrain (areas with lots of rainfall, like jungles), a robust river crossing capability is required.

Operational Factors

  1. Emergency insertions and delaying actions sometimes appear to be a good way to lose lots of armor for limited gain. This tends to come about due to terrain problems, enemy infiltration and bypassing, and the general confusion prevalent in such operations. The Army should be careful not to piecemeal assets when inserting valuable armor resources into a ‘hot’ situation. In many cases holding back and massing the armor for defense or counter-attack may be the better option.
  2. Transportability limitations have not been a major factor in the past for determining whether lighter or heavier armor were sent into a SSCO or a combat environment.

Casualty Sensitivity

  1. In a SSCO or insurgency, in most cases the weight and armor of the AFVs is not critical. As such, one would not expect any significant changes in losses regardless of the type of AFV used (MBT, medium-weight armor, or light armor). However, the perception that US forces are not equipped with the best-protected vehicle may cause some domestic political problems. The US government is very casualty sensitive during SSCOs. Furthermore, the current US main battle tank particularly impressive, and may help provide some additional intimidation in SSCOs.
  2. In any emergency insertion scenario or conventional war scenario, the use of lighter armor could result in higher US casualties and lesser combat effectiveness. This will certainly cause some domestic political problems and may impact army morale. However by the same token, light infantry forces, unsupported by easily deployable armor could present a worse situation.

U.S. Army Solicits Proposals For Mobile Protected Firepower (MPF) Light Tank

The U.S. Army’s late and apparently lamented M551 Sheridan light tank. [U.S. Department of the Army/Wikipedia]

The U.S. Army recently announced that it will begin soliciting Requests for Proposal (RFP) in November to produce a new lightweight armored vehicle for its Mobile Protected Firepower (MPF) program. MPF is intended to field a company of vehicles for each Army Infantry Brigade Combat Team to provide them with “a long-range direct-fire capability for forcible entry and breaching operations.”

The Army also plans to field the new vehicle quickly. It is dispensing with the usual two-to-three year technology development phase, and will ask for delivery of the first sample vehicles by April 2018, one month after the RFP phase is scheduled to end. This will invariably favor proposals using existing off-the-shelf vehicle designs and “mature technology.”

The Army apparently will also accept RFPs with turret-mounted 105mm main guns, at least initially. According to previous MFP parameters, acceptable designs will eventually need to be able to accommodate 120mm guns.

I have observed in the past that the MPF is the result of the Army’s concerns that its light infantry may be deprived of direct fire support on anti-access/area denial (A2/AD) battlefields. Track-mounted, large caliber direct fire guns dedicated to infantry support are something of a doctrinal throwback to the assault guns of World War II, however.

There was a noted tendency during World War II to use anything on the battlefield that resembled a tank as a main battle tank, with unhappy results for the not-main battle tanks. As a consequence, assault guns, tank destroyers, and light tanks became evolutionary dead-ends in the development of post-World War II armored doctrine (the late M551 Sheridan, retired without replacement in 1996, notwithstanding). [For more on the historical background, see The Dupuy Institute, “The Historical Effectiveness of Lighter-Weight Armored Forces,” August 2001.]

The Army has been reluctant to refer to MPF as a light tank, but as David Dopp, the MPF Program Manager admitted, “I don’t want to say it’s a light tank, but it’s kind of like a light tank.” He went on to say that “It’s not going toe to toe with a tank…It’s for the infantry. It goes where the infantry goes — it breaks through bunkers, it works through targets that the infantry can’t get through.”

Major General David Bassett, program executive officer for the Army’s Ground Combat Systems concurred. It will be a tracked vehicle with substantial armor protection, Bassett said, “but certainly not what you’d see on a main battle tank.”

It will be interesting to see what the RFPs have to offer.

Previous TDI commentaries on the MPF Program:

https://dupuyinstitute.dreamhosters.com/2016/10/19/back-to-the-future-the-mobile-protected-firepower-mpf-program/

https://dupuyinstitute.dreamhosters.com/2017/03/21/u-s-army-moving-forward-with-mobile-protected-firepower-mpf-program/

TDI Friday Read: Principles Of War & Verities Of Combat

[izquotes.com]

Trevor Dupuy distilled his research and analysis on combat into a series of verities, or what he believed were empirically-derived principles. He intended for his verities to complement the classic principles of war, a slightly variable list of maxims of unknown derivation and provenance, which describe the essence of warfare largely from the perspective of Western societies. These are summarized below.

What Is The Best List Of The Principles Of War?

The Timeless Verities of Combat

Trevor N. Dupuy’s Combat Attrition Verities

Trevor Dupuy’s Combat Advance Rate Verities

Tanks With Frickin’ Laser Beams On Their Heads

Portent Of The Future: This Mobile High-Energy Laser-equipped Stryker was evaluated during the 2017 Maneuver Fires Integrated Experiment at Fort Sill, Oklahoma. The MEHEL can shoot a drone out of the sky using a 5kW laser. (Photo Credit: C. Todd Lopez)

As the U.S. Army ponders its Multi-Domain Battle concept for future warfare, it is also considering what types of weapons it will need to conduct it. Among these is a replacement for the venerable M1 Abrams Main Battle Tank (MBT), which is now 40 years old. Recent trends in combat are leading some to postulate a next-generation MBT that is lighter and more maneuverable, but equipped with a variety of new defensive capabilities to make them more survivable against modern anti-tank weapons. These include electronic jamming and anti-missile missiles, collectively referred to as Active Protection Systems, as well as unmanned turrets. Manned vehicles will be augmented with unmanned ground vehicles.The Army is also exploring new advanced composite armor and nanotechnology.

Also under consideration are replacements for the traditional MBT long gun, including high-power lasers and railguns. Some of these could be powered by hydrogen power cells and biofuels.

As the U.S. looks toward lighter armored vehicles, some countries appear to going in the other direction. Both Russia and Israel are developing beefed-up versions of existing vehicles designed specifically for fighting in urban environments.

The strategic demands on U.S. ground combat forces don’t allow for the luxury of fielding larger combat vehicles that complicate the challenge of rapid deployment to face global threats. Even as the historical trend toward increasing lethality and greater dispersion on the battlefield continues, the U.S. may have little choice other than to rely on technological innovation to balance the evolving capabilities of potential adversaries.

Trevor Dupuy on Military Innovation

In an article published by the Association of the U.S. Army last November that I missed on the first go around, U.S. Army Colonel Eric E. Aslakson and Lieutenant Colonel Richard T. Brown, (ret.) make the argument that “Staff colonels are the Army’s innovation center of gravity.”

The U.S. defense community has settled upon innovation as one of the key methods for overcoming the challenges posed by new technologies and strategies adapted by potential adversaries, as articulated in the Third Offset Strategy developed by the late Obama administration. It is becoming clear however, that a desire to innovate is not the same as actual innovation. Aslakson and Brown make the point that innovation is not simply technological development and identify what they believe is a crucial institutional component of military innovation in the U.S. Army.

Innovation is differentiated from other forms of change such as improvisation and adaptation by the scale, scope and impact of that value creation. Innovation is not about a new widget or process, but the decisive value created and the competitive advantage gained when that new widget or process is applied throughout the Army or joint force…

However, none of these inventions or activities can rise to the level of innovation unless there are skilled professionals within the Army who can convert these ideas into competitive advantage across the enterprise. That is the role of a colonel serving in a major command staff leadership assignment…

These leaders do not typically create the change. But they have the necessary institutional and operational expertise and experience, contacts, resources and risk tolerance to manage processes across the entire framework of doctrine, organization, training, materiel, leadership and education, personnel and facilities, converting invention into competitive advantage.

In his seminal book, The Evolution of Weapons and Warfare (Indianapolis, IN: The Bobbs-Merrill Company, Inc., 1980), Trevor Dupuy noted a pattern in the historical relationship between development of weapons of increasing lethality and their incorporation in warfare. He too noted that the crucial factor was not the technology itself, but the organizational approach to using it.

When a radically new weapon appears and is first adopted, it is inherently incongruous with existing weapons and doctrine. This is reflected in a number of ways; uncertainty and hesitation in coordination of the new weapon with earlier ones; inability to use it consistently, effectively, and flexibly in offensive action, which often leads to tactical stalemate; vulnerability of the weapon and of its users to hostile countermeasures; heavy losses incident to the employment of the new weapon, or in attempting to oppose it in combat. From this it is possible to establish the following criteria of assimilation:

  1. Confident employment of the weapon in accordance with a doctrine that assures its coordination with other weapons in a manner compatible with the characteristics of each.
  2. Consistently effective, flexible use of the weapon in offensive warfare, permitting full employment of the advantages of superior leadership and/or superior resources.
  3. Capability of dealing effectively with anticipated and unanticipated countermeasures.
  4. Sharp decline in casualties for those employing the weapon, often combined with a capability for inflicting disproportionately heavy losses on the enemy.

Based on his assessment of this historical pattern, Dupuy derived a set of preconditions necessary for a successful assimilation of new technology into warfare.

  1. An imaginative, knowledgeable leadership focused on military affairs, supported by extensive knowledge of, and competence in, the nature and background of the existing military system.
  2. Effective coordination of the nation’s economic, technological-scientific, and military resources.
    1. There must exist industrial or developmental research institutions, basic research institutions, military staffs and their supporting institutions, together with administrative arrangements for linking these with one another and with top decision-making echelons of government.
    2. These bodies must conduct their research, developmental, and testing activities according to mutually familiar methods so that their personnel can communicate, can be mutually supporting, and can evaluate each other’s results.
    3. The efforts of these institutions—in related matters—must be directed toward a common goal.
  3. Opportunity for battlefield experimentation as a basis for evaluation and analysis.

Does the U.S. defense establishment’s organizational and institutional approach to innovation meet these preconditions? Good question.

Attrition In Future Land Combat

Soldiers with Battery C, 1st Battalion, 82nd Field Artillery Regiment, 1st Brigade Combat Team, 1st Cavalry Division maneuver their Paladins through Hohenfels Training Area, Oct. 26. Photo Credit: Capt. John Farmer, 1st Brigade Combat Team, 1st Cav

Last autumn, U.S. Army Chief of Staff General Mark Milley asserted that “we are on the cusp of a fundamental change in the character of warfare, and specifically ground warfare. It will be highly lethal, very highly lethal, unlike anything our Army has experienced, at least since World War II.” He made these comments while describing the Army’s evolving Multi-Domain Battle concept for waging future combat against peer or near-peer adversaries.

How lethal will combat on future battlefields be? Forecasting the future is, of course, an undertaking fraught with uncertainties. Milley’s comments undoubtedly reflect the Army’s best guesses about the likely impact of new weapons systems of greater lethality and accuracy, as well as improved capabilities for acquiring targets. Many observers have been closely watching the use of such weapons on the battlefield in the Ukraine. The spectacular success of the Zelenopillya rocket strike in 2014 was a convincing display of the lethality of long-range precision strike capabilities.

It is possible that ground combat attrition in the future between peer or near-peer combatants may be comparable to the U.S. experience in World War II (although there were considerable differences between the experiences of the various belligerents). Combat losses could be heavier. It certainly seems likely that they would be higher than those experienced by U.S. forces in recent counterinsurgency operations.

Unfortunately, the U.S. Defense Department has demonstrated a tenuous understanding of the phenomenon of combat attrition. Despite wildly inaccurate estimates for combat losses in the 1991 Gulf War, only modest effort has been made since then to improve understanding of the relationship between combat and casualties. The U.S. Army currently does not have either an approved tool or a formal methodology for casualty estimation.

Historical Trends in Combat Attrition

Trevor Dupuy did a great deal of historical research on attrition in combat. He found several trends that had strong enough empirical backing that he deemed them to be verities. He detailed his conclusions in Understanding War: History and Theory of Combat (1987) and Attrition: Forecasting Battle Casualties and Equipment Losses in Modern War (1995).

Dupuy documented a clear relationship over time between increasing weapon lethality, greater battlefield dispersion, and declining casualty rates in conventional combat. Even as weapons became more lethal, greater dispersal in frontage and depth among ground forces led daily personnel loss rates in battle to decrease.

The average daily battle casualty rate in combat has been declining since 1600 as a consequence. Since battlefield weapons continue to increase in lethality and troops continue to disperse in response, it seems logical to presume the trend in loss rates continues to decline, although this may not necessarily be the case. There were two instances in the 19th century where daily battle casualty rates increased—during the Napoleonic Wars and the American Civil War—before declining again. Dupuy noted that combat casualty rates in the 1973 Arab-Israeli War remained roughly the same as those in World War II (1939-45), almost thirty years earlier. Further research is needed to determine if average daily personnel loss rates have indeed continued to decrease into the 21st century.

Dupuy also discovered that, as with battle outcomes, casualty rates are influenced by the circumstantial variables of combat. Posture, weather, terrain, season, time of day, surprise, fatigue, level of fortification, and “all out” efforts affect loss rates. (The combat loss rates of armored vehicles, artillery, and other other weapons systems are directly related to personnel loss rates, and are affected by many of the same factors.) Consequently, yet counterintuitively, he could find no direct relationship between numerical force ratios and combat casualty rates. Combat power ratios which take into account the circumstances of combat do affect casualty rates; forces with greater combat power inflict higher rates of casualties than less powerful forces do.

Winning forces suffer lower rates of combat losses than losing forces do, whether attacking or defending. (It should be noted that there is a difference between combat loss rates and numbers of losses. Depending on the circumstances, Dupuy found that the numerical losses of the winning and losing forces may often be similar, even if the winner’s casualty rate is lower.)

Dupuy’s research confirmed the fact that the combat loss rates of smaller forces is higher than that of larger forces. This is in part due to the fact that smaller forces have a larger proportion of their troops exposed to enemy weapons; combat casualties tend to concentrated in the forward-deployed combat and combat support elements. Dupuy also surmised that Prussian military theorist Carl von Clausewitz’s concept of friction plays a role in this. The complexity of interactions between increasing numbers of troops and weapons simply diminishes the lethal effects of weapons systems on real world battlefields.

Somewhat unsurprisingly, higher quality forces (that better manage the ambient effects of friction in combat) inflict casualties at higher rates than those with less effectiveness. This can be seen clearly in the disparities in casualties between German and Soviet forces during World War II, Israeli and Arab combatants in 1973, and U.S. and coalition forces and the Iraqis in 1991 and 2003.

Combat Loss Rates on Future Battlefields

What do Dupuy’s combat attrition verities imply about casualties in future battles? As a baseline, he found that the average daily combat casualty rate in Western Europe during World War II for divisional-level engagements was 1-2% for winning forces and 2-3% for losing ones. For a divisional slice of 15,000 personnel, this meant daily combat losses of 150-450 troops, concentrated in the maneuver battalions (The ratio of wounded to killed in modern combat has been found to be consistently about 4:1. 20% are killed in action; the other 80% include mortally wounded/wounded in action, missing, and captured).

It seems reasonable to conclude that future battlefields will be less densely occupied. Brigades, battalions, and companies will be fighting in spaces formerly filled with armies, corps, and divisions. Fewer troops mean fewer overall casualties, but the daily casualty rates of individual smaller units may well exceed those of WWII divisions. Smaller forces experience significant variation in daily casualties, but Dupuy established average daily rates for them as shown below.

For example, based on Dupuy’s methodology, the average daily loss rate unmodified by combat variables for brigade combat teams would be 1.8% per day, battalions would be 8% per day, and companies 21% per day. For a brigade of 4,500, that would result in 81 battle casualties per day, a battalion of 800 would suffer 64 casualties, and a company of 120 would lose 27 troops. These rates would then be modified by the circumstances of each particular engagement.

Several factors could push daily casualty rates down. Milley envisions that U.S. units engaged in an anti-access/area denial environment will be constantly moving. A low density, highly mobile battlefield with fluid lines would be expected to reduce casualty rates for all sides. High mobility might also limit opportunities for infantry assaults and close quarters combat. The high operational tempo will be exhausting, according to Milley. This could also lower loss rates, as the casualty inflicting capabilities of combat units decline with each successive day in battle.

It is not immediately clear how cyberwarfare and information operations might influence casualty rates. One combat variable they might directly impact would be surprise. Dupuy identified surprise as one of the most potent combat power multipliers. A surprised force suffers a higher casualty rate and surprisers enjoy lower loss rates. Russian combat doctrine emphasizes using cyber and information operations to achieve it and forces with degraded situational awareness are highly susceptible to it. As Zelenopillya demonstrated, surprise attacks with modern weapons can be devastating.

Some factors could push combat loss rates up. Long-range precision weapons could expose greater numbers of troops to enemy fires, which would drive casualties up among combat support and combat service support elements. Casualty rates historically drop during night time hours, although modern night-vision technology and persistent drone reconnaissance might will likely enable continuous night and day battle, which could result in higher losses.

Drawing solid conclusions is difficult but the question of future battlefield attrition is far too important not to be studied with greater urgency. Current policy debates over whether or not the draft should be reinstated and the proper size and distribution of manpower in active and reserve components of the Army hinge on getting this right. The trend away from mass on the battlefield means that there may not be a large margin of error should future combat forces suffer higher combat casualties than expected.

Back to the Future

The opening sentence of an article by Dan Goure caught my attention: “Every decade of so since the 1960s, the U.S. Army creates a requirement for what can nominally be described as a light tank.” The article is here: http://nationalinterest.org/blog/the-buzz/its-back-the-future-mobile-protected-firepower-20539?page=show

It reminds me of a meeting we had in late 2000 with Walt Hollis, Deputy Under Secretary of the Army (Operations Research). He started the meeting by telling us that something like “Every now and then, someone seems to want to bring back the light tank.” He then went on to explain that these requirements are being pushed from the top (meaning by the Chief of Staff of the Army) and they should probably have a study done on the subject. He then asked us to do such an effort.

We did and it is here: http://www.dupuyinstitute.org/pdf/mwa-2lightarmor.pdf

We decided to examine the effectiveness of lighter-weight armor based upon real-world experience in six possible scenarios:

  1. Conventional conflicts against an armor supported or armor heavy force.
  2. Emergency insertions against an armor support or armor heavy force.
  3. Conventional conflict against a primarily infantry force (as one might encounter in sub-Saharan Africa).
  4. Emergency insertion against a primarily infantry force.
  5. A small to medium insurgency (includes an insurgency that develops during a peacekeeping operation).
  6. A peacekeeping operation or similar Operation Other Than War (OOTW) that has some potential for violence.

Anyhow, I am not going to summarize the report here as that would take too long. I did draft up a chapter on it for inclusion in War by Numbers, but decided to leave it out as it did not fit into the “theory testing” theme of the book. Instead, I am holding it for one of my next books, Future American Wars.

The interesting aspect of the report is that we were at a meeting in 2001 at an Army OR outfit that was reviewing our report, and they told us that the main point of action they drew from the report was that we needed to make sure our armor vehicles were better protected against mines. As our report looked at the type of tank losses being suffered in the insurgencies and OOTWs, there were a lot of vehicles being lost to mines. Apparently they had not fully realized this (and Iraq did not occur until 2003).

Trevor Dupuy and Historical Trends Related to Weapon Lethality

There appears to be renewed interest in U.S. Army circles in Trevor Dupuy’s theory of a historical relationship between increasing weapon lethality, declining casualty rates, and greater dispersion on the battlefield. A recent article by Army officer and strategist Aaron Bazin, “Seven Charts That Help Explain American War” at The Strategy Bridge, used a composite version of two of Dupuy’s charts to explain the American military’s attraction to technology. (The graphic in Bazin’s article originated in a 2009 Australian Army doctrinal white paper, “Army’s Future Land Operating Concept,” which evidently did not cite Dupuy as the original source for the charts or the associated concepts.)

John McRea, like Bazin a U.S. Army officer, and a founding member of The Military Writer’s Guild, reposted Dupuy’s graphic in a blog post entitled “Outrageous Fortune: Spears and Arrows,” examining tactical and economic considerations in the use of asymmetrical technologies in warfare.

Dr. Conrad Crane, Chief of Historical Services for the U.S. Army Heritage and Education Center at the Army War College, also referenced Dupuy’s concepts in his look at human performance requirements, “The Future Soldier: Alone in a Crowd,” at War on the Rocks.

Dupuy originally developed his theory based on research and analysis undertaken by the Historical Evaluation and Research Organization (HERO) in 1964, for a study he directed, “Historical Trends Related to Weapon Lethality.” (Annex I, Annex II, Annex III). HERO had been contracted by the Advanced Tactics Project (AVTAC) of the U.S. Army Combat Developments Command, to provide unclassified support for Project OREGON TRAIL, a series of 45 classified studies of tactical nuclear weapons, tactics, and organization, which took 18 months to complete.

AVTAC asked HERO “to identify and analyze critical relationships and the cause-effect aspects of major advances in the lethality of weapons and associated changes in tactics and organization” from the Roman Era to the present. HERO’s study itself was a group project, incorporating 58 case studies from 21 authors, including such scholars as Gunther E. Rothenberg, Samuel P. Huntington, S.L.A. Marshall, R. Ernest Dupuy, Grace P. Hayes, Louis Morton, Peter Paret, Stefan T. Possony, and Theodore Ropp.

Dupuy synthesized and analyzed these case studies for the HERO study’s final report. He described what he was seeking to establish in his 1979 book, Numbers, Predictions and War: Using History to Evaluate Combat Factors and Predict the Outcome of Battles.

If the numbers of military history mean anything, it appears self-evident that there must be some kind of relationship between the quantities of weapons employed by opposing forces in combat, and the number of casualties suffered by each side. It also seems fairly obvious that some weapons are likely to cause more casualties than others, and that the effectiveness of weapons will depend upon their ability to reach their targets. So it becomes clear that the relationship of weapons to casualties is not quite the simple matter of comparing numbers to numbers. To compare weapons to casualties it is necessary to know not only the numbers of weapons, but also how many there are of each different type, and how effective or lethal each of these is.

The historical relationship between lethality, casualties, and dispersion that Dupuy deduced in this study provided the basis for his subsequent quest to establish an empirically-based, overarching theory of combat, which he articulated through his Quantified Judgement Model. Dupuy refined and updated the analysis from the 1964 HERO study in his 1980 book, The Evolution of Weapons and Warfare.

Turkish Army Tanks Proving Vulnerable In Syria

Turkish Army Leopard 2A3 main battle tank struck by suspected Daesh Kornet anti-tank missile. [Photo: YouTube / Turkish Military Portal Turk Silahli Kuvvetleri]

The Turkish Army, conducting Operation EUPHRATES SHIELD in northern Syria since 24 August 2016, has reportedly lost at least 15 German-made, Leopard 2A4 main battle tanks (MBTs) to man-portable anti-tank systems (MANPATs) in combat with Daesh fighters. Five were lost in December 2016 after the Turks deployed several of its 354 Leopard 2A4’s to buttress its offensive, which initially employed mainly older, upgraded American-made M60A3 MBTs. 10 more Leopard 2’s were knocked out in subsequent fighting in urban terrain around the town of al-Bab in northern Syria, 15 miles south of the Turkish-Syrian border.

Daesh fighters have used a variety of anti-tank missiles against the Turkish Army vehicles, including U.S.-made BGM 71 TOW-2s, and Soviet/Russian-produced 9K111 Fagots (“Basoon”) and 9M133 Kornets, all reportedly captured from Syrian and Iraqi Army stocks. The 60-ton Leopard 2, a mainstay of NATO armored forces, earned a reputation for invulnerability after surviving Taliban improvised explosive device (IED) attacks in Afghanistan. However, the A3 version used by the Turks does not have explosive reactive armor or active protection systems, which are used by the many modern MBTs to defeat the new generation of MANPATs.

There is also some evidence that Turkish tank losses are at least partly due to faulty tactical employment. Some of the M60s destroyed in the initial fighting were observed firing from open positions when hit, rather then from less vulnerable hull down locations. The Leopard 2A3’s, with heavy frontal armor, but thinner protection on the sides and rear, were designed for long-range tank v. tank fighting, and are notably unsuited for combat in urban terrain. Successful urban combat places a premium on combined arms tactics, particularly the use of dismounted infantry to clear out potential enemy MANPAT flanking fire positions.