Tag human factors

Dupuy’s Verities: Fortification

The Maginot Line was a 900-mile long network of underground bunkers, tunnels and concrete retractable gun batteries. Its heaviest defenses were located along the 280-mile long border with Germany. [WikiCommons]

The sixth of Trevor Dupuy’s Timeless Verities of Combat is:

Defenders’ chances of success are directly proportional to fortification strength.

From Understanding War (1987):

To some modern military thinkers this is a truism needing no explanation or justification. Others have asserted that prepared defenses are attractive traps to be avoided at all costs. Such assertions, however, either ignore or misread historical examples. History is so fickle that it is dangerous for historians to use such words as “always” or “never.” Nevertheless I offer a bold counter-assertion: never in history has a defense been weakened by the availability of fortifications; defensive works always enhance combat strength. At the very least, fortifications will delay an attacker and add to his casualties; at best, fortifications will enable the defender to defeat the attacker.

Anyone who suggests that breakthroughs of defensive positions in recent history demonstrate the bankruptcy of defensive posture and/or fortifications is seriously deceiving himself and is misinterpreting modern history. One can cite as historical examples the overcoming of the Maginot Line, the Mannerheim Line, the Siegfried Line, and the Bar Lev Line, and from these examples conclude that these fortifications failed. Such a conclusion is absolutely wrong. It is true that all of these fortifications were overcome, but only because a powerful enemy was willing to make a massive and costly effort. (Of course, the Maginot Line was not attacked frontally in 1940; the Germans were so impressed by its defensive strength that they bypassed it, and were threatening its rear when France surrendered.) All of these fortifications afforded time for the defenders to make new dispositions, to bring up reserves, or to mobilize. All were intended to obstruct, to permit the defenders to punish the attackers and, above all to delay; all were successful in these respects. The Bar Lev Line, furthermore, saved Israel from disastrous defeat, and became the base for a successful offensive.[p. 4]

Will field fortifications continue to enhance the combat power of land forces on future battlefields? This is an interesting question. While the character of existing types of fortifications—trenches, strongpoint, and bunkers—might change, seeking cover and concealment from the earth might become even more important.

Dr. Alexander Kott, Chief Scientist at the U.S. Army Research Laboratory, provided one perspective in a recently published paper titled “Ground Warfare in 2050: How It Might Look.” In it, Kott speculated about “tactical ground warfighting circa 2050, in a major conflict between technologically advanced peer competitors.”

Kott noted that on future battlefields dominated by sensor saturation and long-range precision fires, “Conventional entrenchments and other fortifications will become less effective when teams of intelligent munitions can maneuver into and within a trench or a bunker.” Light dismounted forces “will have limited, if any, protection either from antimissiles or armor (although they may be provided a degree of protection by armor deployed by their robotic helpers… Instead, they will use cluttered ground terrain to obtain cover and concealment. In addition, they will attempt to distract and deceive…by use of decoys.”

Heavy forces “capable of producing strong lethal effects—substantial in size and mounted on vehicles—will be unlikely to avoid detection, observation, and fires.” To mitigate continuous incoming precision fires, Kott envisions that heavy ground forces will employ a combination of cover and concealment, maneuver, dispersion, decoys, vigorous counter-ISR (intelligence, surveillance, and reconnaissance) attacks, and armor, but will rely primarily “on extensive use of intelligent antimissiles (evolutions of today’s Active Protection Systems [APSs], Counter Rocket, Artillery, and Mortar [C-RAM], Iron Dome, etc.)”

Conversely, Kott does not foresee underground cover and concealment disappearing from future battlefields. “To gain protection from intelligent munitions, extended subterranean tunnels and facilities will become important. This in turn will necessitate the tunnel-digging robotic machines, suitably equipped for battlefield mobility.” Not only will “large static assets such as supply dumps or munitions repair and manufacturing shops” be moved underground, but maneuver forces and field headquarters might conceivably rapidly dig themselves into below-ground fighting positions between operational bounds.

Comparing Force Ratios to Casualty Exchange Ratios

“American Marines in Belleau Wood (1918)” by Georges Scott [Wikipedia]

Comparing Force Ratios to Casualty Exchange Ratios
Christopher A. Lawrence

[The article below is reprinted from the Summer 2009 edition of The International TNDM Newsletter.]

There are three versions of force ratio versus casualty exchange ratio rules, such as the three-to-one rule (3-to-1 rule), as it applies to casualties. The earliest version of the rule as it relates to casualties that we have been able to find comes from the 1958 version of the U.S. Army Maneuver Control manual, which states: “When opposing forces are in contact, casualties are assessed in inverse ratio to combat power. For friendly forces advancing with a combat power superiority of 5 to 1, losses to friendly forces will be about 1/5 of those suffered by the opposing force.”[1]

The RAND version of the rule (1992) states that: “the famous ‘3:1 rule ’, according to which the attacker and defender suffer equal fractional loss rates at a 3:1 force ratio the battle is in mixed terrain and the defender enjoys ‘prepared ’defenses…” [2]

Finally, there is a version of the rule that dates from the 1967 Maneuver Control manual that only applies to armor that shows:

As the RAND construct also applies to equipment losses, then this formulation is directly comparable to the RAND construct.

Therefore, we have three basic versions of the 3-to-1 rule as it applies to casualties and/or equipment losses. First, there is a rule that states that there is an even fractional loss ratio at 3-to-1 (the RAND version), Second, there is a rule that states that at 3-to-1, the attacker will suffer one-third the losses of the defender. And third, there is a rule that states that at 3-to-1, the attacker and defender will suffer the same losses as the defender. Furthermore, these examples are highly contradictory, with either the attacker suffering three times the losses of the defender, the attacker suffering the same losses as the defender, or the attacker suffering 1/3 the losses of the defender.

Therefore, what we will examine here is the relationship between force ratios and exchange ratios. In this case, we will first look at The Dupuy Institute’s Battles Database (BaDB), which covers 243 battles from 1600 to 1900. We will chart on the y-axis the force ratio as measured by a count of the number of people on each side of the forces deployed for battle. The force ratio is the number of attackers divided by the number of defenders. On the x-axis is the exchange ratio, which is a measured by a count of the number of people on each side who were killed, wounded, missing or captured during that battle. It does not include disease and non-battle injuries. Again, it is calculated by dividing the total attacker casualties by the total defender casualties. The results are provided below:

As can be seen, there are a few extreme outliers among these 243 data points. The most extreme, the Battle of Tippennuir (l Sep 1644), in which an English Royalist force under Montrose routed an attack by Scottish Covenanter militia, causing about 3,000 casualties to the Scots in exchange for a single (allegedly self-inflicted) casualty to the Royalists, was removed from the chart. This 3,000-to-1 loss ratio was deemed too great an outlier to be of value in the analysis.

As it is, the vast majority of cases are clumped down into the corner of the graph with only a few scattered data points outside of that clumping. If one did try to establish some form of curvilinear relationship, one would end up drawing a hyperbola. It is worthwhile to look inside that clump of data to see what it shows. Therefore, we will look at the graph truncated so as to show only force ratios at or below 20-to-1 and exchange rations at or below 20-to-1.

Again, the data remains clustered in one corner with the outlying data points again pointing to a hyperbola as the only real fitting curvilinear relationship. Let’s look at little deeper into the data by truncating the data on 6-to-1 for both force ratios and exchange ratios. As can be seen, if the RAND version of the 3-to-1 rule is correct, then the data should show at 3-to-1 force ratio a 3-to-1 casualty exchange ratio. There is only one data point that comes close to this out of the 243 points we examined.

If the FM 105-5 version of the rule as it applies to armor is correct, then the data should show that at 3-to-1 force ratio there is a 1-to-1 casualty exchange ratio, at a 4-to-1 force ratio a 1-to-2 casualty exchange ratio, and at a 5-to-1 force ratio a 1-to-3 casualty exchange ratio. Of course, there is no armor in these pre-WW I engagements, but again no such exchange pattern does appear.

If the 1958 version of the FM 105-5 rule as it applies to casualties is correct, then the data should show that at a 3-to-1 force ratio there is 0.33-to-1 casualty exchange ratio, at a 4-to-1 force ratio a .25-to-1 casualty exchange ratio, and at a 5-to-1 force ratio a 0.20-to-5 casualty exchange ratio. As can be seen, there is not much indication of this pattern, or for that matter any of the three patterns.

Still, such a construct may not be relevant to data before 1900. For example, Lanchester claimed in 1914 in Chapter V, “The Principal of Concentration,” of his book Aircraft in Warfare, that there is greater advantage to be gained in modern warfare from concentration of fire.[3] Therefore, we will tap our more modern Division-Level Engagement Database (DLEDB) of 675 engagements, of which 628 have force ratios and exchange ratios calculated for them. These 628 cases are then placed on a scattergram to see if we can detect any similar patterns.

Even though this data covers from 1904 to 1991, with the vast majority of the data coming from engagements after 1940, one again sees the same pattern as with the data from 1600-1900. If there is a curvilinear relationship, it is again a hyperbola. As before, it is useful to look into the mass of data clustered into the corner by truncating the force and exchange ratios at 20-to-1. This produces the following:

Again, one sees the data clustered in the corner, with any curvilinear relationship again being a hyperbola. A look at the data further truncated to a 10-to-1 force or exchange ratio does not yield anything more revealing.

And, if this data is truncated to show only 5-to-1 force ratio and exchange ratios, one again sees:

Again, this data appears to be mostly just noise, with no clear patterns here that support any of the three constructs. In the case of the RAND version of the 3-to-1 rule, there is again only one data point (out of 628) that is anywhere close to the crossover point (even fractional exchange rate) that RAND postulates. In fact, it almost looks like the data conspires to make sure it leaves a noticeable “hole” at that point. The other postulated versions of the 3-to-1 rules are also given no support in these charts.

Also of note, that the relationship between force ratios and exchange ratios does not appear to significantly change for combat during 1600-1900 when compared to the data from combat from 1904-1991. This does not provide much support for the intellectual construct developed by Lanchester to argue for his N-square law.

While we can attempt to torture the data to find a better fit, or can try to argue that the patterns are obscured by various factors that have not been considered, we do not believe that such a clear pattern and relationship exists. More advanced mathematical methods may show such a pattern, but to date such attempts have not ferreted out these alleged patterns. For example, we refer the reader to Janice Fain’s article on Lanchester equations, The Dupuy Institute’s Capture Rate Study, Phase I & II, or any number of other studies that have looked at Lanchester.[4]

The fundamental problem is that there does not appear to be a direct cause and effect between force ratios and exchange ratios. It appears to be an indirect relationship in the sense that force ratios are one of several independent variables that determine the outcome of an engagement, and the nature of that outcome helps determines the casualties. As such, there is a more complex set of interrelationships that have not yet been fully explored in any study that we know of, although it is briefly addressed in our Capture Rate Study, Phase I & II.

NOTES

[1] FM 105-5, Maneuver Control (1958), 80.

[2] Patrick Allen, “Situational Force Scoring: Accounting for Combined Arms Effects in Aggregate Combat Models,” (N-3423-NA, The RAND Corporation, Santa Monica, CA, 1992), 20.

[3] F. W. Lanchester, Aircraft in Warfare: The Dawn of the Fourth Arm (Lanchester Press Incorporated, Sunnyvale, Calif., 1995), 46-60. One notes that Lanchester provided no data to support these claims, but relied upon an intellectual argument based upon a gross misunderstanding of ancient warfare.

[4] In particular, see page 73 of Janice B. Fain, “The Lanchester Equations and Historical Warfare: An Analysis of Sixty World War II Land Engagements,” Combat Data Subscription Service (HERO, Arlington, Va., Spring 1975).

Trevor Dupuy and Technological Determinism in Digital Age Warfare

Is this the only innovation in weapons technology in history with the ability in itself to change warfare and alter the balance of power? Trevor Dupuy thought it might be. Shot IVY-MIKE, Eniwetok Atoll, 1 November 1952. [Wikimedia]

Trevor Dupuy was skeptical about the role of technology in determining outcomes in warfare. While he did believe technological innovation was crucial, he did not think that technology itself has decided success or failure on the battlefield. As he wrote posthumously in 1997,

I am a humanist, who is also convinced that technology is as important today in war as it ever was (and it has always been important), and that any national or military leader who neglects military technology does so to his peril and that of his country. But, paradoxically, perhaps to an extent even greater than ever before, the quality of military men is what wins wars and preserves nations. (emphasis added)

His conclusion was largely based upon his quantitative approach to studying military history, particularly the way humans have historically responded to the relentless trend of increasingly lethal military technology.

The Historical Relationship Between Weapon Lethality and Battle Casualty Rates

Based on a 1964 study for the U.S. Army, Dupuy identified a long-term historical relationship between increasing weapon lethality and decreasing average daily casualty rates in battle. (He summarized these findings in his book, The Evolution of Weapons and Warfare (1980). The quotes below are taken from it.)

Since antiquity, military technological development has produced weapons of ever increasing lethality. The rate of increase in lethality has grown particularly dramatically since the mid-19th century.

However, in contrast, the average daily casualty rate in combat has been in decline since 1600. With notable exceptions during the 19th century, casualty rates have continued to fall through the late 20th century. If technological innovation has produced vastly more lethal weapons, why have there been fewer average daily casualties in battle?

The primary cause, Dupuy concluded, was that humans have adapted to increasing weapon lethality by changing the way they fight. He identified three key tactical trends in the modern era that have influenced the relationship between lethality and casualties:

Technological Innovation and Organizational Assimilation

Dupuy noted that the historical correlation between weapons development and their use in combat has not been linear because the pace of integration has been largely determined by military leaders, not the rate of technological innovation. “The process of doctrinal assimilation of new weapons into compatible tactical and organizational systems has proved to be much more significant than invention of a weapon or adoption of a prototype, regardless of the dimensions of the advance in lethality.” [p. 337]

As a result, the history of warfare has been exemplified more often by a discontinuity between weapons and tactical systems than effective continuity.

During most of military history there have been marked and observable imbalances between military efforts and military results, an imbalance particularly manifested by inconclusive battles and high combat casualties. More often than not this imbalance seems to be the result of incompatibility, or incongruence, between the weapons of warfare available and the means and/or tactics employing the weapons. [p. 341]

In short, military organizations typically have not been fully effective at exploiting new weapons technology to advantage on the battlefield. Truly decisive alignment between weapons and systems for their employment has been exceptionally rare. Dupuy asserted that

There have been six important tactical systems in military history in which weapons and tactics were in obvious congruence, and which were able to achieve decisive results at small casualty costs while inflicting disproportionate numbers of casualties. These systems were:

  • the Macedonian system of Alexander the Great, ca. 340 B.C.
  • the Roman system of Scipio and Flaminius, ca. 200 B.C.
  • the Mongol system of Ghengis Khan, ca. A.D. 1200
  • the English system of Edward I, Edward III, and Henry V, ca. A.D. 1350
  • the French system of Napoleon, ca. A.D. 1800
  • the German blitzkrieg system, ca. A.D. 1940 [p. 341]

With one caveat, Dupuy could not identify any single weapon that had decisively changed warfare in of itself without a corresponding human adaptation in its use on the battlefield.

Save for the recent significant exception of strategic nuclear weapons, there have been no historical instances in which new and lethal weapons have, of themselves, altered the conduct of war or the balance of power until they have been incorporated into a new tactical system exploiting their lethality and permitting their coordination with other weapons; the full significance of this one exception is not yet clear, since the changes it has caused in warfare and the influence it has exerted on international relations have yet to be tested in war.

Until the present time, the application of sound, imaginative thinking to the problem of warfare (on either an individual or an institutional basis) has been more significant than any new weapon; such thinking is necessary to real assimilation of weaponry; it can also alter the course of human affairs without new weapons. [p. 340]

Technological Superiority and Offset Strategies

Will new technologies like robotics and artificial intelligence provide the basis for a seventh tactical system where weapons and their use align with decisive battlefield results? Maybe. If Dupuy’s analysis is accurate, however, it is more likely that future increases in weapon lethality will continue to be counterbalanced by human ingenuity in how those weapons are used, yielding indeterminate—perhaps costly and indecisive—battlefield outcomes.

Genuinely effective congruence between weapons and force employment continues to be difficult to achieve. Dupuy believed the preconditions necessary for successful technological assimilation since the mid-19th century have been a combination of conducive military leadership; effective coordination of national economic, technological-scientific, and military resources; and the opportunity to evaluate and analyze battlefield experience.

Can the U.S. meet these preconditions? That certainly seemed to be the goal of the so-called Third Offset Strategy, articulated in 2014 by the Obama administration. It called for maintaining “U.S. military superiority over capable adversaries through the development of novel capabilities and concepts.” Although the Trump administration has stopped using the term, it has made “maximizing lethality” the cornerstone of the 2018 National Defense Strategy, with increased funding for the Defense Department’s modernization priorities in FY2019 (though perhaps not in FY2020).

Dupuy’s original work on weapon lethality in the 1960s coincided with development in the U.S. of what advocates of a “revolution in military affairs” (RMA) have termed the “First Offset Strategy,” which involved the potential use of nuclear weapons to balance Soviet superiority in manpower and material. RMA proponents pointed to the lopsided victory of the U.S. and its allies over Iraq in the 1991 Gulf War as proof of the success of a “Second Offset Strategy,” which exploited U.S. precision-guided munitions, stealth, and intelligence, surveillance, and reconnaissance systems developed to counter the Soviet Army in Germany in the 1980s. Dupuy was one of the few to attribute the decisiveness of the Gulf War both to airpower and to the superior effectiveness of U.S. combat forces.

Trevor Dupuy certainly was not an anti-technology Luddite. He recognized the importance of military technological advances and the need to invest in them. But he believed that the human element has always been more important on the battlefield. Most wars in history have been fought without a clear-cut technological advantage for one side; some have been bloody and pointless, while others have been decisive for reasons other than technology. While the future is certainly unknown and past performance is not a guarantor of future results, it would be a gamble to rely on technological superiority alone to provide the margin of success in future warfare.

Human Factors In Warfare: Fear In A Lethal Environment

Chaplain (Capt.) Emil Kapaun (right) and Capt. Jerome A. Dolan, a medical officer with the 8th Cavalry Regiment, 1st Cavalry Division, carry an exhausted Soldier off the battlefield in Korea, early in the war. Kapaun was famous for exposing himself to enemy fire. When his battalion was overrun by a Chinese force in November 1950, rather than take an opportunity to escape, Kapaun voluntarily remained behind to minister to the wounded. In 2013, Kapaun posthumously received the Medal of Honor for his actions in the battle and later in a prisoner of war camp, where he died in May 1951. [Photo Credit: Courtesy of the U.S. Army Center of Military History]

[This piece was originally published on 27 June 2017.]

Trevor Dupuy’s theories about warfare were sometimes criticized by some who thought his scientific approach neglected the influence of the human element and chance and amounted to an attempt to reduce war to mathematical equations. Anyone who has read Dupuy’s work knows this is not, in fact, the case.

Moral and behavioral (i.e human) factors were central to Dupuy’s research and theorizing about combat. He wrote about them in detail in his books. In 1989, he presented a paper titled “The Fundamental Information Base for Modeling Human Behavior in Combat” at a symposium on combat modeling that provided a clear, succinct summary of his thinking on the topic.

He began by concurring with Carl von Clausewitz’s assertion that

[P]assion, emotion, and fear [are] the fundamental characteristics of combat… No one who has participated in combat can disagree with this Clausewitzean emphasis on passion, emotion, and fear. Without doubt, the single most distinctive and pervasive characteristic of combat is fear: fear in a lethal environment.

Despite the ubiquity of fear on the battlefield, Dupuy pointed out that there is no way to study its impact except through the historical record of combat in the real world.

We cannot replicate fear in laboratory experiments. We cannot introduce fear into field tests. We cannot create an environment of fear in training or in field exercises.

So, to study human reaction in a battlefield environment we have no choice but to go to the battlefield, not the laboratory, not the proving ground, not the training reservation. But, because of the nature of the very characteristics of combat which we want to study, we can’t study them during the battle. We can only do so retrospectively.

We have no choice but to rely on military history. This is why military history has been called the laboratory of the soldier.

He also pointed out that using military history analytically has its own pitfalls and must be handled carefully lest it be used to draw misleading or inaccurate conclusions.

I must also make clear my recognition that military history data is far from perfect, and that–even at best—it reflects the actions and interactions of unpredictable human beings. Extreme caution must be exercised when using or analyzing military history. A single historical example can be misleading for either of two reasons: (a) The data is inaccurate, or (b) The example may be true, but also be untypical.

But, when a number of respectable examples from history show consistent patterns of human behavior, then we can have confidence that behavior in accordance with the pattern is typical, and that behavior inconsistent with the pattern is either untypical, or is inaccurately represented.

He then stated very concisely the scientific basis for his method.

My approach to historical analysis is actuarial. We cannot predict the future in any single instance. But, on the basis of a large set of reliable experience data, we can predict what is likely to occur under a given set of circumstances.

Dupuy listed ten combat phenomena that he believed were directly or indirectly related to human behavior. He considered the list comprehensive, if not exhaustive.

I shall look at Dupuy’s treatment of each of these in future posts (click links above).

Interchangeability Of Fire And Multi-Domain Operations

Soviet “forces and resources” chart. [Richard Simpkin, Deep Battle: The Brainchild of Marshal Tukhachevskii (Brassey’s: London, 1987) p. 254]

With the emergence of the importance of cross-domain fires in the U.S. effort to craft a joint doctrine for multi-domain operations, there is an old military concept to which developers should give greater consideration: interchangeability of fire.

This is an idea that British theorist Richard Simpkin traced back to 19th century Russian military thinking, which referred to it then as the interchangeability of shell and bayonet. Put simply, it was the view that artillery fire and infantry shock had equivalent and complimentary effects against enemy troops and could be substituted for one another as circumstances dictated on the battlefield.

The concept evolved during the development of the Russian/Soviet operational concept of “deep battle” after World War I to encompass the interchangeability of fire and maneuver. In Soviet military thought, the battlefield effects of fires and the operational maneuver of ground forces were equivalent and complementary.

This principle continues to shape contemporary Russian military doctrine and practice, which is, in turn, influencing U.S. thinking about multi-domain operations. In fact, the idea is not new to Western military thinking at all. Maneuver warfare advocates adopted the concept in the 1980s, but it never found its way into official U.S. military doctrine.

An Idea Who’s Time Has Come. Again.

So why should the U.S. military doctrine developers take another look at interchangeability now? First, the increasing variety and ubiquity of long-range precision fire capabilities is forcing them to address the changing relationship between mass and fires on multi-domain battlefields. After spending a generation waging counterinsurgency and essentially outsourcing responsibility for operational fires to the U.S. Air Force and U.S. Navy, both the U.S. Army and U.S. Marine Corps are scrambling to come to grips with the way technology is changing the character of land operations. All of the services are at the very beginning of assessing the impact of drone swarms—which are themselves interchangeable blends of mass and fires—on combat.

Second, the rapid acceptance and adoption of the idea of cross-domain fires has carried along with it an implicit acceptance of the interchangeability of the effects of kinetic and non-kinetic (i.e. information, electronic, and cyber) fires. This alone is already forcing U.S. joint military thinking to integrate effects into planning and decision-making.

The key component of interchangability is effects. Inherent in it is acceptance of the idea that combat forces have effects on the battlefield that go beyond mere physical lethality, i.e. the impact of fire or shock on a target. U.S. Army doctrine recognizes three effects of fires: destruction, neutralization, and suppression. Russian and maneuver warfare theorists hold that these same effects can be achieved through the effects of operational maneuver. The notion of interchangeability offers a very useful way of thinking about how to effectively integrate the lethality of mass and fires on future battlefields.

But Wait, Isn’t Effects Is A Four-Letter Word?

There is a big impediment to incorporating interchangeability into U.S. military thinking, however, and that is the decidedly ambivalent attitude of the U.S. land warfare services toward thinking about non-tangible effects in warfare.

As I have pointed out before, the U.S. Army (at least) has no effective way of assessing the effects of fires on combat, cross-domain or otherwise, because it has no real doctrinal methodology for calculating combat power on the battlefield. Army doctrine conceives of combat power almost exclusively in terms of capabilities and functions, not effects. In Army thinking, a combat multiplier is increased lethality in the form of additional weapons systems or combat units, not the intangible effects of operational or moral (human) factors on combat. For example, suppression may be a long-standing element in doctrine, but the Army still does not really have a clear idea of what causes it or what battlefield effects it really has.

In the wake of the 1990-91 Gulf War and the ensuing “Revolution in Military Affairs,” the U.S. Air Force led the way forward in thinking about the effects of lethality on the battlefield and how it should be leveraged to achieve strategic ends. It was the motivating service behind the development of a doctrine of “effects based operations” or EBO in the early 2000s.

However, in 2008, U.S. Joint Forces Command commander, U.S Marine General (and current Secretary of Defense) James Mattis ordered his command to no longer “use, sponsor, or export” EBO or related concepts and terms, the underlying principles of which he deemed to be “fundamentally flawed.” This effectively eliminated EBO from joint planning and doctrine. While Joint Forces Command was disbanded in 2011 and EBO thinking remains part of Air Force doctrine, Mattis’s decree pretty clearly showed what the U.S. land warfare services think about battlefield effects.

Human Factors In Warfare: Suppression

Images from a Finnish Army artillery salvo fired by towed 130mm howitzers during an exercise in 2013. [Puolustusvoimat – Försvarsmakten – The Finnish Defence Forces/YouTube]
[This piece was originally posted on 24 August 2017.]

According to Trevor Dupuy, “Suppression is perhaps the most obvious and most extensive manifestation of the impact of fear on the battlefield.” As he detailed in Understanding War: History and Theory of Combat (1987),

There is probably no obscurity of combat requiring clarification and understanding more urgently than that of suppression… Suppression usually is defined as the effect of fire (primarily artillery fire) upon the behavior of hostile personnel, reducing, limiting, or inhibiting their performance of combat duties. Suppression lasts as long as the fires continue and for some brief, indeterminate period thereafter. Suppression is the most important effect of artillery fire, contributing directly to the ability of the supported maneuver units to accomplish their missions while preventing the enemy units from accomplishing theirs. (p. 251)

Official US Army field artillery doctrine makes a distinction between “suppression” and “neutralization.” Suppression is defined to be instantaneous and fleeting; neutralization, while also temporary, is relatively longer-lasting. Neutralization, the doctrine says, results when suppressive effects are so severe and long-lasting that a target is put out of action for a period of time after the suppressive fire is halted. Neutralization combines the psychological effects of suppressive gunfire with a certain amount of damage. The general concept of neutralization, as distinct from the more fleeting suppression, is a reasonable one. (p. 252)

Despite widespread acknowledgement of the existence of suppression and neutralization, the lack of interest in analyzing its effects was a source of professional frustration for Dupuy. As he commented in 1989,

The British did some interesting but inconclusive work on suppression in their battlefield operations research in World War II. In the United States I am aware of considerable talk about suppression, but very little accomplishment, over the past 20 years. In the light of the significance of suppression, our failure to come to grips with the issue is really quite disgraceful.

This lack of interest is curious, given that suppression and neutralization remain embedded in U.S. Army combat doctrine to this day. The current Army definitions are:

Suppression – In the context of the computed effects of field artillery fires, renders a target ineffective for a short period of time producing at least 3-percent casualties or materiel damage. [Army Doctrine Reference Publication (ADRP) 1-02, Terms and Military Symbols, December 2015, p. 1-87]

Neutralization – In the context of the computed effects of field artillery fires renders a target ineffective for a short period of time, producing 10-percent casualties or materiel damage. [ADRP 1-02, p. 1-65]

A particular source for Dupuy’s irritation was the fact that these definitions were likely empirically wrong. As he argued in Understanding War,

This is almost certainly the wrong way to approach quantification of neutralization. Not only is there no historical evidence that 10% casualties are enough to achieve this effect, there is no evidence that any level of losses is required to achieve the psycho-physiological effects of suppression or neutralization. Furthermore, the time period in which casualties are incurred is probably more important than any arbitrary percentage of loss, and the replacement of casualties and repair of damage are probably irrelevant. (p. 252)

Thirty years after Dupuy pointed this problem out, the construct remains enshrined in U.S. doctrine, unquestioned and unsubstantiated. Dupuy himself was convinced that suppression probably had little, if anything, to do with personnel loss rates.

I believe now that suppression is related to and probably a component of disruption caused by combat processes other than surprise, such as a communications failure. Further research may reveal, however, that suppression is a very distinct form of disruption that can be measured or estimated quite independently of disruption caused by any other phenomenon. (Understanding War, p. 251)

He had developed a hypothesis for measuring the effects of suppression, but was unable to interest anyone in the U.S. government or military in sponsoring a study on it. Suppression as a combat phenomenon remains only vaguely understood.

“Quantity Has A Quality All Its Own”: How Robot Swarms Might Change Future Combat

Humans vs. machines in the film Matrix Revolutions (2003) [Screencap by The Matrix Wiki]

Yesterday, Paul Scharre, director of the Technology and National Security Program at the Center for a New American Security, and prolific writer on the future of robotics and artificial intelligence, posted a fascinating argument on Twitter regarding swarms and mass in future combat.

His thread was in response to an article by Shmuel Shmuel posted on War on the Rocks, which made the case that the same computer processing technology enabling robotic vehicles combined with old fashioned kinetic weapons (i.e. anti-aircraft guns) offered a cost-effective solution to swarms.

Scharre agreed that robotic drones are indeed vulnerable to such countermeasures, but made this point in response:

He then went to contend that robotic swarms offer the potential to reestablish the role of mass in future combat. Mass, either in terms of numbers of combatants or volume of firepower, has played a decisive role in most wars. As the aphorism goes, usually credited to Josef Stalin, “mass has a quality all of its own.”

Scharre observed that the United States went in a different direction in its post-World War II approach to warfare, adopting instead “offset” strategies that sought to leverage superior technology to balance against the mass militaries of the Communist bloc.

While effective during the Cold War, Scharre concurs with the arguments that offset strategies are becoming far too expensive and may ultimately become self-defeating.

In order to avoid this fate, Scharre contends that

The entire thread is well worth reading.

Trevor Dupuy would have agreed with much of what Scharre’s asserts. He identified the relationship between increasing weapon lethality and battlefield dispersion that goes back to the 17th century. Dupuy believed that the primary factor driving this relationship was the human response to fear in a lethal environment, with soldiers dispersing in depth and frontage on battlefields in order to survive weapons of ever increasing destructiveness.

TDI Friday Read: Lethality, Dispersion, And Mass On Future Battlefields

Robots might very well change that equation. Whether autonomous or “human in the loop,” robotic swarms do not feel fear and are inherently expendable. Cheaply produced robots might very well provide sufficient augmentation to human combat units to restore the primacy of mass in future warfare.

Dupuy’s Verities: The Utility Of Defense

Battle of Franklin, 1864 by Kurz and Allison. Restoration by Adam Cuerden [Wikimedia Commons]

The third of Trevor Dupuy’s Timeless Verities of Combat is:

Defensive posture is necessary when successful offense is impossible.

From Understanding War (1987):

Even though offensive action is essential to ultimate combat success, a combat commander opposed by a more powerful enemy has no choice but to assume a defensive posture. Since defensive posture automatically increases the combat power of his force, the defending commander at least partially redresses the imbalance of forces. At a minimum he is able to slow down the advance of the attacking enemy, and he might even beat him. In this way, through negative combat results, the defender may ultimately hope to wear down the attacker to the extent that his initial relative weakness is transformed into relative superiority, thus offering the possibility of eventually assuming the offensive and achieving positive combat results. The Franklin and Nashville Campaign of our Civil War, and the El Alamein Campaign of World War II are examples.

Sometimes the commander of a numerically superior offensive force may reduce the strength of portions of his force in order to achieve decisive superiority for maximum impact on the enemy at some other critical point on the battlefield, with the result that those reduced-strength components are locally outnumbered. A contingent thus reduced in strength may therefore be required to assume a defensive posture, even though the overall operational posture of the marginally superior force is offensive, and the strengthened contingent of the same force is attacking with the advantage of superior combat power. A classic example was the role of Davout at Auerstadt when Napoléon was crushing the Prussians at Jena. Another is the role played by “Stonewall” Jackson’s corps at the Second Battle of Bull Run. [pp. 2-3]

This verity is both derivative of Dupuy’s belief that the defensive posture is a human reaction to the lethal environment of combat, and his concurrence with Clausewitz’s dictum that the defense is the stronger form of combat. Soldiers in combat will sometimes reach a collective conclusion that they can no longer advance in the face of lethal opposition, and will stop and seek cover and concealment to leverage the power of the defense. Exploiting the multiplying effect of the defensive is also a way for a force with weaker combat power to successfully engage a stronger one.

It also relates to the principle of war known as economy of force, as defined in the 1954 edition of the U.S. Army’s Field Manual FM 100-5, Field Service Regulations, Operations:

Minimum essential means must be employed at points other than that of decision. To devote means to unnecessary secondary efforts or to employ excessive means on required secondary efforts is to violate the principle of both mass and the objective. Limited attacks, the defensive, deception, or even retrograde action are used in noncritical areas to achieve mass in the critical area.

These concepts are well ingrained in modern U.S. Army doctrine. FM 3-0 Operations (2017) summarizes the defensive this way:

Defensive tasks are conducted to defeat an enemy attack, gain time, economize forces, and develop conditions favorable for offensive or stability tasks. Normally, the defense alone cannot achieve a decisive victory. However, it can set conditions for a counteroffensive or counterattack that enables Army forces to regain and exploit the initiative. Defensive tasks are a counter to enemy offensive actions. They defeat attacks, destroying as much of an attacking enemy as possible. They also preserve and maintain control over land, resources, and populations. The purpose of defensive tasks is to retain key terrain, guard populations, protect lines of communications, and protect critical capabilities against enemy attacks and counterattacks. Commanders can conduct defensive tasks to gain time and economize forces, so offensive tasks can be executed elsewhere. [Para 1-72]

UPDATE: Just as I posted this, out comes a contrarian view from U.S. Army CAPT Brandon Morgan via the Modern War Institute at West Point blog. He argues that the U.S. Army is not placing enough emphasis on preparing to conduct defensive operations:

In his seminal work On War, Carl von Clausewitz famously declared that, in comparison to the offense, “the defensive form of warfare is intrinsically stronger than the offensive.”

This is largely due to the defender’s ability to occupy key terrain before the attack, and is most true when there is sufficient time to prepare the defense. And yet within the doctrinal hierarchy of the four elements of decisive action (offense, defense, stability, and defense support of civil authorities), the US Army prioritizes offensive operations. Ultimately, this has led to training that focuses almost exclusively on offensive operations at the cost of deliberate planning for the defense. But in the context of a combined arms fight against a near-peer adversary, US Army forces will almost assuredly find themselves initially fighting in a defense. Our current neglect of deliberate planning for the defense puts these soldiers who will fight in that defense at grave risk.

Response To “CEV Calculations in Italy, 1943”

German infantry defending against the allied landing at Anzio pass a damaged “Elefant” tank destroyer, March 1944. [Wikimedia/Bundesarchiv]

[The article below is reprinted from August 1997 edition of The International TNDM Newsletter. It was written in response to an article by Mr. Zetterling originally published in the June 1997 edition of The International TNDM Newsletter]

Response to Niklas Zetterling’s Article
by Christopher A. Lawrence

Mr. Zetterling is currently a professor at the Swedish War College and previously worked at the Swedish National Defense Research Establishment. As I have been having an ongoing dialogue with Prof. Zetterling on the Battle of Kursk, I have had the opportunity to witness his approach to researching historical data and the depth of research. I would recommend that all of our readers take a look at his recent article in the Journal of Slavic Military Studies entitled “Loss Rates on the Eastern Front during World War II.” Mr. Zetterling does his German research directly from the Captured German Military Records by purchasing the rolls of microfilm from the US National Archives. He is using the same German data sources that we are. Let me attempt to address his comments section by section:

The Database on Italy 1943-44:

Unfortunately, the Italian combat data was one of the early HERO research projects, with the results first published in 1971. I do not know who worked on it nor the specifics of how it was done. There are references to the Captured German Records, but significantly, they only reference division files for these battles. While I have not had the time to review Prof. Zetterling‘s review of the original research. I do know that some of our researchers have complained about parts of the Italian data. From what I’ve seen, it looks like the original HERO researchers didn’t look into the Corps and Army files, and assumed what the attached Corps artillery strengths were. Sloppy research is embarrassing, although it does occur, especially when working under severe financial constraints (for example, our Battalion-level Operations Database). If the research is sloppy or hurried, or done from secondary sources, then hopefully the errors are random, and will effectively counterbalance each other, and not change the results of the analysis. If the errors are all in one direction, then this will produce a biased result.

I have no basis to believe that Prof. Zetterling’s criticism is wrong, and do have many reasons to believe that it is correct. Until l can take the time to go through the Corps and Army files, I intend to operate under the assumption that Prof. Zetterling’s corrections are good. At some point I will need to go back through the Italian Campaign data and correct it and update the Land Warfare Database. I did compare Prof. Zetterling‘s list of battles with what was declared to be the forces involved in the battle (according to the Combat Data Subscription Service) and they show the following attached artillery:

It is clear that the battles were based on the assumption that here was Corps-level German artillery. A strength comparison between the two sides is displayed in the chart on the next page.

The Result Formula:

CEV is calculated from three factors. Therefore a consistent 20% error in casualties will result in something less than a 20% error in CEV. The mission effectiveness factor is indeed very “fuzzy,” and these is simply no systematic method or guidance in its application. Sometimes, it is not based upon the assigned mission of the unit, but its perceived mission based upon the analyst’s interpretation. But, while l have the same problems with the mission accomplishment scores as Mr. Zetterling, I do not have a good replacement. Considering the nature of warfare, I would hate to create CEVs without it. Of course, Trevor Dupuy was experimenting with creating CEVs just from casualty effectiveness, and by averaging his two CEV scores (CEVt and CEVI) he heavily weighted the CEV calculation for the TNDM towards measuring primarily casualty effectiveness (see the article in issue 5 of the Newsletter, “Numerical Adjustment of CEV Results: Averages and Means“). At this point, I would like to produce a new, single formula for CEV to replace the current two and its averaging methodology. I am open to suggestions for this.

Supply Situation:

The different ammunition usage rate of the German and US Armies is one of the reasons why adding a logistics module is high on my list of model corrections. This was discussed in Issue 2 of the Newsletter, “Developing a Logistics Model for the TNDM.” As Mr. Zetterling points out, “It is unlikely that an increase in artillery ammunition expenditure will result in a proportional increase in combat power. Rather it is more likely that there is some kind of diminished return with increased expenditure.” This parallels what l expressed in point 12 of that article: “It is suspected that this increase [in OLIs] will not be linear.”

The CEV does include “logistics.” So in effect, if one had a good logistics module, the difference in logistics would be accounted for, and the Germans (after logistics is taken into account) may indeed have a higher CEV.

General Problems with Non-Divisional Units Tooth-to-Tail Ratio

Point taken. The engagements used to test the TNDM have been gathered over a period of over 25 years, by different researchers and controlled by different management. What is counted when and where does change from one group of engagements to the next. While l do think this has not had a significant result on the model outcomes, it is “sloppy” and needs to be addressed.

The Effects of Defensive Posture

This is a very good point. If the budget was available, my first step in “redesigning” the TNDM would be to try to measure the effects of terrain on combat through the use of a large LWDB-type database and regression analysis. I have always felt that with enough engagements, one could produce reliable values for these figures based upon something other than judgement. Prof. Zetterling’s proposed methodology is also a good approach, easier to do, and more likely to get a conclusive result. I intend to add this to my list of model improvements.

Conclusions

There is one other problem with the Italian data that Prof. Zetterling did not address. This was that the Germans and the Allies had different reporting systems for casualties. Quite simply, the Germans did not report as casualties those people who were lightly wounded and treated and returned to duty from the divisional aid station. The United States and England did. This shows up when one compares the wounded to killed ratios of the various armies, with the Germans usually having in the range of 3 to 4 wounded for every one killed, while the allies tend to have 4 to 5 wounded for every one killed. Basically, when comparing the two reports, the Germans “undercount” their casualties by around 17 to 20%. Therefore, one probably needs to use a multiplier of 20 to 25% to match the two casualty systems. This was not taken into account in any the work HERO did.

Because Trevor Dupuy used three factors for measuring his CEV, this error certainly resulted in a slightly higher CEV for the Germans than should have been the case, but not a 20% increase. As Prof. Zetterling points out, the correction of the count of artillery pieces should result in a higher CEV than Col. Dupuy calculated. Finally, if Col. Dupuy overrated the value of defensive terrain, then this may result in the German CEV being slightly lower.

As you may have noted in my list of improvements (Issue 2, “Planned Improvements to the TNDM”), I did list “revalidating” to the QJM Database. [NOTE: a summary of the QJM/TNDM validation efforts can be found here.] As part of that revalidation process, we would need to review the data used in the validation data base first, account for the casualty differences in the reporting systems, and determine if the model indeed overrates the effect of terrain on defense.

CEV Calculations in Italy, 1943

Tip of the Avalanche by Keith Rocco. Soldiers from the U.S. 36th Infantry Division landing at Salerno, Italy, September 1943.

[The article below is reprinted from June 1997 edition of The International TNDM Newsletter. Chris Lawrence’s response from the August 1997 edition of The International TNDM Newsletter will be posted on Friday.]

CEV Calculations in Italy, 1943
by Niklas Zetterling

Perhaps one of the most debated results of the TNDM (and its predecessors) is the conclusion that the German ground forces on average enjoyed a measurable qualitative superiority over its US and British opponents. This was largely the result of calculations on situations in Italy in 1943-44, even though further engagements have been added since the results were first presented. The calculated German superiority over the Red Army, despite the much smaller number of engagements, has not aroused as much opposition. Similarly, the calculated Israeli effectiveness superiority over its enemies seems to have surprised few.

However, there are objections to the calculations on the engagements in Italy 1943. These concern primarily the database, but there are also some questions to be raised against the way some of the calculations have been made, which may possibly have consequences for the TNDM.

Here it is suggested that the German CEV [combat effectiveness value] superiority was higher than originally calculated. There are a number of flaws in the original calculations, each of which will be discussed separately below. With the exception of one issue, all of them, if corrected, tend to give a higher German CEV.

The Database on Italy 1943-44

According to the database the German divisions had considerable fire support from GHQ artillery units. This is the only possible conclusion from the fact that several pieces of the types 15cm gun, 17cm gun, 21cm gun, and 15cm and 21cm Nebelwerfer are included in the data for individual engagements. These types of guns were almost exclusively confined to GHQ units. An example from the database are the three engagements Port of Salerno, Amphitheater, and Sele-Calore Corridor. These take place simultaneously (9-11 September 1943) with the German 16th Pz Div on the Axis side in all of them (no other division is included in the battles). Judging from the manpower figures, it seems to have been assumed that the division participated with one quarter of its strength in each of the two former battles and half its strength in the latter. According to the database, the number of guns were:

15cm gun 28
17cm gun 12
21cm gun 12
15cm NbW 27
21cm NbW 21

This would indicate that the 16th Pz Div was supported by the equivalent of more than five non-divisional artillery battalions. For the German army this is a suspiciously high number, usually there were rather something like one GHQ artillery battalion for each division, or even less. Research in the German Military Archives confirmed that the number of GHQ artillery units was far less than indicated in the HERO database. Among the useful documents found were a map showing the dispositions of 10th Army artillery units. This showed clearly that there was only one non-divisional artillery unit south of Rome at the time of the Salerno landings, the III/71 Nebelwerfer Battalion. Also the 557th Artillery Battalion (17cm gun) was present, it was included in the artillery regiment (33rd Artillery Regiment) of 15th Panzergrenadier Division during the second half of 1943. Thus the number of German artillery pieces in these engagements is exaggerated to an extent that cannot be considered insignificant. Since OLI values for artillery usually constitute a significant share of the total OLI of a force in the TNDM, errors in artillery strength cannot be dismissed easily.

While the example above is but one, further archival research has shown that the same kind of error occurs in all the engagements in September and October 1943. It has not been possible to check the engagements later during 1943, but a pattern can be recognized. The ratio between the numbers of various types of GHQ artillery pieces does not change much from battle to battle. It seems that when the database was developed, the researchers worked with the assumption that the German corps and army organizations had organic artillery, and this assumption may have been used as a “rule of thumb.” This is wrong, however; only artillery staffs, command and control units were included in the corps and army organizations, not firing units. Consequently we have a systematic error, which cannot be corrected without changing the contents of the database. It is worth emphasizing that we are discussing an exaggeration of German artillery strength of about 100%, which certainly is significant. Comparing the available archival records with the database also reveals errors in numbers of tanks and antitank guns, but these are much smaller than the errors in artillery strength. Again these errors do always inflate the German strength in those engagements l have been able to check against archival records. These errors tend to inflate German numerical strength, which of course affects CEV calculations. But there are further objections to the CEV calculations.

The Result Formula

The “result formula” weighs together three factors: casualties inflicted, distance advanced, and mission accomplishment. It seems that the first two do not raise many objections, even though the relative weight of them may always be subject to argumentation.

The third factor, mission accomplishment, is more dubious however. At first glance it may seem to be natural to include such a factor. Alter all, a combat unit is supposed to accomplish the missions given to it. However, whether a unit accomplishes its mission or not depends both on its own qualities as well as the realism of the mission assigned. Thus the mission accomplishment factor may reflect the qualities of the combat unit as well as the higher HQs and the general strategic situation. As an example, the Rapido crossing by the U.S. 36th Infantry Division can serve. The division did not accomplish its mission, but whether the mission was realistic, given the circumstances, is dubious. Similarly many German units did probably, in many situations, receive unrealistic missions, particularly during the last two years of the war (when most of the engagements in the database were fought). A more extreme example of situations in which unrealistic missions were given is the battle in Belorussia, June-July 1944, where German units were regularly given impossible missions. Possibly it is a general trend that the side which is fighting at a strategic disadvantage is more prone to give its combat units unrealistic missions.

On the other hand it is quite clear that the mission assigned may well affect both the casualty rates and advance rates. If, for example, the defender has a withdrawal mission, advance may become higher than if the mission was to defend resolutely. This must however not necessarily be handled by including a missions factor in a result formula.

I have made some tentative runs with the TNDM, testing with various CEV values to see which value produced an outcome in terms of casualties and ground gained as near as possible to the historical result. The results of these runs are very preliminary, but the tendency is that higher German CEVs produce more historical outcomes, particularly concerning combat.

Supply Situation

According to scattered information available in published literature, the U.S. artillery fired more shells per day per gun than did German artillery. In Normandy, US 155mm M1 howitzers fired 28.4 rounds per day during July, while August showed slightly lower consumption, 18 rounds per day. For the 105mm M2 howitzer the corresponding figures were 40.8 and 27.4. This can be compared to a German OKH study which, based on the experiences in Russia 1941-43, suggested that consumption of 105mm howitzer ammunition was about 13-22 rounds per gun per day, depending on the strength of the opposition encountered. For the 150mm howitzer the figures were 12-15.

While these figures should not be taken too seriously, as they are not from primary sources and they do also reflect the conditions in different theaters, they do at least indicate that it cannot be taken for granted that ammunition expenditure is proportional to the number of gun barrels. In fact there also exist further indications that Allied ammunition expenditure was greater than the German. Several German reports from Normandy indicate that they were astonished by the Allied ammunition expenditure.

It is unlikely that an increase in artillery ammunition expenditure will result in a proportional increase combat power. Rather it is more likely that there is some kind of diminished return with increased expenditure.

General Problems with Non-Divisional Units

A division usually (but not necessarily) includes various support services, such as maintenance, supply, and medical services. Non-divisional combat units have to a greater extent to rely on corps and army for such support. This makes it complicated to include such units, since when entering, for example, the manpower strength and truck strength in the TNDM, it is difficult to assess their contribution to the overall numbers.

Furthermore, the amount of such forces is not equal on the German and Allied sides. In general the Allied divisional slice was far greater than the German. In Normandy the US forces on 25 July 1944 had 812,000 men on the Continent, while the number of divisions was 18 (including the 5th Armored, which was in the process of landing on the 25th). This gives a divisional slice of 45,000 men. By comparison the German 7th Army mustered 16 divisions and 231,000 men on 1 June 1944, giving a slice of 14,437 men per division. The main explanation for the difference is the non-divisional combat units and the logistical organization to support them. In general, non-divisional combat units are composed of powerful, but supply-consuming, types like armor, artillery, antitank and antiaircraft. Thus their contribution to combat power and strain on the logistical apparatus is considerable. However I do not believe that the supporting units’ manpower and vehicles have been included in TNDM calculations.

There are however further problems with non-divisional units. While the whereabouts of tank and tank destroyer units can usually be established with sufficient certainty, artillery can be much harder to pin down to a specific division engagement. This is of course a greater problem when the geographical extent of a battle is small.

Tooth-to-Tail Ratio

Above was discussed the lack of support units in non-divisional combat units. One effect of this is to create a force with more OLI per man. This is the result of the unit‘s “tail” belonging to some other part of the military organization.

In the TNDM there is a mobility formula, which tends to favor units with many weapons and vehicles compared to the number of men. This became apparent when I was performing a great number of TNDM runs on engagements between Swedish brigades and Soviet regiments. The Soviet regiments usually contained rather few men, but still had many AFVs, artillery tubes, AT weapons, etc. The Mobility Formula in TNDM favors such units. However, I do not think this reflects any phenomenon in the real world. The Soviet penchant for lean combat units, with supply, maintenance, and other services provided by higher echelons, is not a more effective solution in general, but perhaps better suited to the particular constraints they were experiencing when forming units, training men, etc. In effect these services were existing in the Soviet army too, but formally not with the combat units.

This problem is to some extent reminiscent to how density is calculated (a problem discussed by Chris Lawrence in a recent issue of the Newsletter). It is comparatively easy to define the frontal limit of the deployment area of force, and it is relatively easy to define the lateral limits too. It is, however, much more difficult to say where the rear limit of a force is located.

When entering forces in the TNDM a rear limit is, perhaps unintentionally, drawn. But if the combat unit includes support units, the rear limit is pushed farther back compared to a force whose combat units are well separated from support units.

To what extent this affects the CEV calculations is unclear. Using the original database values, the German forces are perhaps given too high combat strength when the great number of GHQ artillery units is included. On the other hand, if the GHQ artillery units are not included, the opposite may be true.

The Effects of Defensive Posture

The posture factors are difficult to analyze, since they alone do not portray the advantages of defensive position. Such effects are also included in terrain factors.

It seems that the numerical values for these factors were assigned on the basis of professional judgement. However, when the QJM was developed, it seems that the developers did not assume the German CEV superiority. Rather, the German CEV superiority seems to have been discovered later. It is possible that the professional judgement was about as wrong on the issue of posture effects as they were on CEV. Since the British and American forces were predominantly on the offensive, while the Germans mainly defended themselves, a German CEV superiority may, at least partly, be hidden in two high effects for defensive posture.

When using corrected input data on the 20 situations in Italy September-October 1943, there is a tendency that the German CEV is higher when they attack. Such a tendency is also discernible in the engagements presented in Hitler’s Last Gamble. Appendix H, even though the number of engagements in the latter case is very small.

As it stands now this is not really more than a hypothesis, since it will take an analysis of a greater number of engagements to confirm it. However, if such an analysis is done, it must be done using several sets of data. German and Allied attacks must be analyzed separately, and preferably the data would be separated further into sets for each relevant terrain type. Since the effects of the defensive posture are intertwined with terrain factors, it is very much possible that the factors may be correct for certain terrain types, while they are wrong for others. It may also be that the factors can be different for various opponents (due to differences in training, doctrine, etc.). It is also possible that the factors are different if the forces are predominantly composed of armor units or mainly of infantry.

One further problem with the effects of defensive position is that it is probably strongly affected by the density of forces. It is likely that the main effect of the density of forces is the inability to use effectively all the forces involved. Thus it may be that this factor will not influence the outcome except when the density is comparatively high. However, what can be regarded as “high” is probably much dependent on terrain, road net quality, and the cross-country mobility of the forces.

Conclusions

While the TNDM has been criticized here, it is also fitting to praise the model. The very fact that it can be criticized in this way is a testimony to its openness. In a sense a model is also a theory, and to use Popperian terminology, the TNDM is also very testable.

It should also be emphasized that the greatest errors are probably those in the database. As previously stated, I can only conclude safely that the data on the engagements in Italy in 1943 are wrong; later engagements have not yet been checked against archival documents. Overall the errors do not represent a dramatic change in the CEV values. Rather, the Germans seem to have (in Italy 1943) a superiority on the order of 1.4-1.5, compared to an original figure of 1.2-1.3.

During September and October 1943, almost all the German divisions in southern Italy were mechanized or parachute divisions. This may have contributed to a higher German CEV. Thus it is not certain that the conclusions arrived at here are valid for German forces in general, even though this factor should not be exaggerated, since many of the German divisions in Italy were either newly raised (e.g., 26th Panzer Division) or rebuilt after the Stalingrad disaster (16th Panzer Division plus 3rd and 29th Panzergrenadier Divisions) or the Tunisian debacle (15th Panzergrenadier Division).