Tag Drones

The Russian Artillery Strike That Spooked The U.S. Army

Images of the aftermath of the Zelenopillya rocket attack on 11 July 2014. Photos from Oleksiy Kovalevsky’s Facebook page [Unian Information Agency]

In the second week of July 2014, elements of four brigades of the Ukrainian Army Ground Forces were assembling near the village of Zelenopillya, along a highway leading north to the city of Luhansk, Ukraine. They were deploying along the border with Russia as part of an operation to cut the lines of supply to paramilitary forces of the separatist Luhansk People’s Republic operating in the Luhansk Oblast.

A combined Ukrainian Army and police operation in May and June had achieved considerable success against the Separatist forces and the government of Ukrainian President Petro Poroshenko had declared a unilateral cease-fire in late June. Ukrainian forces resumed the offensive at the beginning of July and fighting broke out around the Luhansk International Airport on 9 July

Zelenopillya, Ukraine and surrounding area [Google Maps]

At about 0430 on the morning of 11 July, a column of battalions from the Ukrainian 24th and 72nd Mechanized Brigades and 79th Airmobile Brigade was struck with an intense artillery barrage near Zelenopillya. The attack lasted only three minutes or so, but imagery posted online of the alleged aftermath reported a scene of devastation and scores of burned out vehicles (see below). Ukraine’s Defense Ministry admitted to 19 killed and 93 wounded in the attack, though other sources claimed up to 36 fatalities. No figures were released on the number of vehicles lost, but a survivor reported on social media that a battalion of the 79th Airmobile Brigade had been almost entirely destroyed.

Video of the aftermath of the attack on Zelenopillya. [LiveLeak]

The Ukrainians quickly identified the perpetrators as “terrorists” using short-range BM-21 Grad multiple rocket launch systems (MLRS) firing across the border from Russian territory, which was only nine kilometers from Zelenopillya. Independent analyses by various open-source intelligence groups amassed persuasive circumstantial evidence supporting the allegation. On 16 July, the U.S. government instituted a round of additional sanctions against Russia, including Russian arms manufacturers and leaders and governments of the Separatist People’s Republic of Donetsk and Luhansk People’s Republic.

https://youtu.be/-6RcvjvDq2c

Video of Russian MLRSs allegedly firing from the same location as the 11 July 2014 strike on Zelenopillya. [YouTube]

Western military analysts took notice of the Zelenopillya attack and similar strikes on Ukrainian forces through the summer of 2014. What caught their attention was the use of drones by the Separatists and their Russian enablers to target Ukrainian forces in near-real time. The Ukrainians had spotted Separatist drones as early as May, but their number and sophistication increased significantly in July, as Russian-made models were also identified.

Analysts also noted that the Zelenopillya rocket strike incorporated a Dual Purpose Improved Conventional Munition (DPICM)  mix of air-dropped mines, top-down anti-tank submuntions, and thermobaric fuel/air explosives to achieve a devastating effect. They surmised the munitions were delivered by Tornado-G 122mm MLRS, an upgraded version of the BM-21 introduced into the Russian Army in 2011.

The sophistication and effectiveness of the attack, in combination with other technological advances in Russian armaments, and new tactics demonstrated in the conflict with Ukraine, prompted the U.S. Army Capabilities Integration Center, then led by Lieutenant General H.R. McMaster, to initiate the Russian New Generation Warfare Study to look at how these advances might influence future warfare. The advent of new long-range precision strike capabilities, high-quality air defense systems, maritime anti-access weapons, information operations and cyber warfare, combined with the adoption of anti-access/area denial (A2/AD) strategies by potential adversaries led into the technologically-rooted Third Offset Strategy and development of the Army and U.S. Marine Corps’ new Multi-Domain Battle concepts.

DOD Successfully Tests Micro-Drones

The Defense Department announced yesterday a successful test of the world’s largest micro-drone swarm. Conducted at China Lake, California in October 2016 by the DOD’s Strategic Capabilities Office, in partnership with Naval Air Systems Command, three F/A-18 Super Hornets launched 103 Perdix micro-drones. According to the DOD press release, “the micro-drones demonstrated advanced swarm behaviors such as collective decision-making, adaptive formation flying, and self-healing.”

The micro-drone swarm comprises an autonomous system.

“Due to the complex nature of combat, Perdix are not pre-programmed synchronized individuals, they are a collective organism, sharing one distributed brain for decision-making and adapting to each other like swarms in nature,” said [Strategic Capabilities Office] Director William Roper. “Because every Perdix communicates and collaborates with every other Perdix, the swarm has no leader and can gracefully adapt to drones entering or exiting the team.”

The Perdix micro-drones were originally designed by Massachusetts Institute of Technology engineering students, and modified for military use by the MIT Lincoln Laboratory in 2013.

To get an idea of the military potential of this technology, watch the demo video tracking the simulated mission.

In related news, the U.S. Army Research Laboratory and Georgia Technical Institute is developing the capability for soldiers in the field to 3D-print swarms of mini-drones to specific specifications within 24 hours. As reported by Defense One,

“A soldier with a mission need uses a computer terminal to rapidly design a suitable [drone],” says a poster by project chief engineer Zacarhy Fisher. “That design is then manufactured using automated processes such as laser cutting and 3D printing. The solution is sent back to the soldier and is deployed.”

Inspired by the modular adaptability of Legos, Fisher says the each drone could be fabricated in less than a day, with total turnaround time of less than three days.