Tag Drones

Simpkin on the Long-Term Effects of Firepower Dominance

To follow on my earlier post introducing British military theorist Richard Simpkin’s foresight in detecting trends in 21st Century warfare, I offer this paragraph, which immediately followed the ones I quoted:

Briefly and in the most general terms possible, I suggest that the long-term effect of dominant firepower will be threefold. It will disperse mass in the form of a “net” of small detachments with the dual role of calling down fire and of local quasi-guerrilla action. Because of its low density, the elements of this net will be everywhere and will thus need only the mobility of the boot. It will transfer mass, structurally from the combat arms to the artillery, and in deployment from the direct fire zone (as we now understand it) to the formation and protection of mobile fire bases capable of movement at heavy-track tempo (Chapter 9). Thus the third effect will be to polarise mobility, for the manoeuvre force still required is likely to be based on the rotor. This line of thought is borne out by recent trends in Soviet thinking on the offensive. The concept of an operational manoeuvre group (OMG) which hives off raid forces against C3 and indirect fire resources is giving way to more fluid and discontinuous manoeuvre by task forces (“air-ground assault groups” found by “shock divisions”) directed onto fire bases—again of course with an operational helicopter force superimposed. [Simpkin, Race To The Swift, p. 169]

It seems to me that in the mid-1980s, Simpkin accurately predicted the emergence of modern anti-access/area denial (A2/AD) defensive systems with reasonable accuracy, as well the evolving thinking on the part of the U.S. military as to how to operate against them.

Simpkin’s vision of task forces (more closely resembling Russian/Soviet OMGs than rotary wing “air-ground assault groups” operational forces, however) employing “fluid and discontinuous manoeuvre” at operational depths to attack long-range precision firebases appears similar to emerging Army thinking about future multidomain operations. (It’s likely that Douglas MacGregor’s Reconnaissance Strike Group concept more closely fits that bill.)

One thing he missed on was his belief that rotary wing helicopter combat forces would supplant armored forces as the primary deep operations combat arm. However, there is the potential possibility that drone swarms might conceivably take the place in Simpkin’s operational construct that he allotted to heliborne forces. Drones have two primary advantages over manned helicopters: they are far cheaper and they are far less vulnerable to enemy fires. With their unique capacity to blend mass and fires, drones could conceivably form the deep strike operational hammer that Simpkin saw rotary wing forces providing.

Just as interesting was Simpkin’s anticipation of the growing importance of information and electronic warfare in these environments. More on that later.

Interchangeability Of Fire And Multi-Domain Operations

Soviet “forces and resources” chart. [Richard Simpkin, Deep Battle: The Brainchild of Marshal Tukhachevskii (Brassey’s: London, 1987) p. 254]

With the emergence of the importance of cross-domain fires in the U.S. effort to craft a joint doctrine for multi-domain operations, there is an old military concept to which developers should give greater consideration: interchangeability of fire.

This is an idea that British theorist Richard Simpkin traced back to 19th century Russian military thinking, which referred to it then as the interchangeability of shell and bayonet. Put simply, it was the view that artillery fire and infantry shock had equivalent and complimentary effects against enemy troops and could be substituted for one another as circumstances dictated on the battlefield.

The concept evolved during the development of the Russian/Soviet operational concept of “deep battle” after World War I to encompass the interchangeability of fire and maneuver. In Soviet military thought, the battlefield effects of fires and the operational maneuver of ground forces were equivalent and complementary.

This principle continues to shape contemporary Russian military doctrine and practice, which is, in turn, influencing U.S. thinking about multi-domain operations. In fact, the idea is not new to Western military thinking at all. Maneuver warfare advocates adopted the concept in the 1980s, but it never found its way into official U.S. military doctrine.

An Idea Who’s Time Has Come. Again.

So why should the U.S. military doctrine developers take another look at interchangeability now? First, the increasing variety and ubiquity of long-range precision fire capabilities is forcing them to address the changing relationship between mass and fires on multi-domain battlefields. After spending a generation waging counterinsurgency and essentially outsourcing responsibility for operational fires to the U.S. Air Force and U.S. Navy, both the U.S. Army and U.S. Marine Corps are scrambling to come to grips with the way technology is changing the character of land operations. All of the services are at the very beginning of assessing the impact of drone swarms—which are themselves interchangeable blends of mass and fires—on combat.

Second, the rapid acceptance and adoption of the idea of cross-domain fires has carried along with it an implicit acceptance of the interchangeability of the effects of kinetic and non-kinetic (i.e. information, electronic, and cyber) fires. This alone is already forcing U.S. joint military thinking to integrate effects into planning and decision-making.

The key component of interchangability is effects. Inherent in it is acceptance of the idea that combat forces have effects on the battlefield that go beyond mere physical lethality, i.e. the impact of fire or shock on a target. U.S. Army doctrine recognizes three effects of fires: destruction, neutralization, and suppression. Russian and maneuver warfare theorists hold that these same effects can be achieved through the effects of operational maneuver. The notion of interchangeability offers a very useful way of thinking about how to effectively integrate the lethality of mass and fires on future battlefields.

But Wait, Isn’t Effects Is A Four-Letter Word?

There is a big impediment to incorporating interchangeability into U.S. military thinking, however, and that is the decidedly ambivalent attitude of the U.S. land warfare services toward thinking about non-tangible effects in warfare.

As I have pointed out before, the U.S. Army (at least) has no effective way of assessing the effects of fires on combat, cross-domain or otherwise, because it has no real doctrinal methodology for calculating combat power on the battlefield. Army doctrine conceives of combat power almost exclusively in terms of capabilities and functions, not effects. In Army thinking, a combat multiplier is increased lethality in the form of additional weapons systems or combat units, not the intangible effects of operational or moral (human) factors on combat. For example, suppression may be a long-standing element in doctrine, but the Army still does not really have a clear idea of what causes it or what battlefield effects it really has.

In the wake of the 1990-91 Gulf War and the ensuing “Revolution in Military Affairs,” the U.S. Air Force led the way forward in thinking about the effects of lethality on the battlefield and how it should be leveraged to achieve strategic ends. It was the motivating service behind the development of a doctrine of “effects based operations” or EBO in the early 2000s.

However, in 2008, U.S. Joint Forces Command commander, U.S Marine General (and current Secretary of Defense) James Mattis ordered his command to no longer “use, sponsor, or export” EBO or related concepts and terms, the underlying principles of which he deemed to be “fundamentally flawed.” This effectively eliminated EBO from joint planning and doctrine. While Joint Forces Command was disbanded in 2011 and EBO thinking remains part of Air Force doctrine, Mattis’s decree pretty clearly showed what the U.S. land warfare services think about battlefield effects.

Drones: The People’s Weapon?

The DJI Matrice 600 commercial drone for professional aerial photography. Available for $4,600, a pair of these drones were allegedly used in an assassination attempt on Venezuelan President Nicolás Maduro in August 2018. [Wired]

Last week, the Russian Ministry of Defense claimed that its military air defense assets had shot down 45 drones in attempted attacks on Khmeimim Air Base, the main Russian military installation in Syria. The frequency of these attacks were increasing since the first one in January, according to Major General Igor Konashenkov. Five drones had been downed in the three days preceding the news conference.

Konashenkov asserted that although the drones appeared technologically primitive, they were actually quite sophisticated, with a range of up to 100 kilometers (60 miles). While the drones were purportedly to be piloted by Syrian rebels from Idlib Provence, the Russians have implied that they required outside assistance to assemble them.

The use of commercial off-the shelf (COTS) or modified off-the-shelf (MOTS) aerial drones by non-state actors for actions ranging from precision bombing attacks on combat troops, to terrorism, to surveillance of law enforcement, appears to be gaining in popularity.

Earlier this month, a pair of commercial drones armed with explosives were used in an alleged assassination attempt on Venezuelan President Nicolás Maduro. Daesh fighters in Syria and Iraq have been using drones for reconnaissance and to drop explosives and bombs on opposition forces.

According to Kathy Gilsinan in The Atlantic,

In 2015, Reuters reported that a protester flew “a drone carrying radioactive sand from the Fukushima nuclear disaster onto the prime minister’s office, though the amount of radiation was minimal.” Mexican cartels have used drones to smuggle drugs and, in one instance, to land disabled grenades on a local police chief’s property. Last summer, a drone delivered an active grenade to an ammunition dump in Ukraine, which Kyle Mizokami of Popular Mechanics reported caused a billion dollars’ worth of damage.

Patrick Turner reported for Defense One that a criminal gang employed drones to harass an FBI hostage rescue team observing an unfolding situation outside a large U.S. city in 2017.

The U.S. Defense Department has been aware for some time of the potential effectiveness of drones, particularly the specter of massed drone “swarm” attacks. In turn, the national security community and the defense industry have turned their attention to potential countermeasures.

As Joseph Trevithick reported in The Drive, the Russians have been successful thus far in thwarting drone attacks in Syria using air defense radars, Pantsir-S1 short-range air defense systems, and electronic warfare systems. These attacks have not involved more than a handful of drones at a time, however. The initial Syrian rebel drone attack on Khmeimim Air Base in January 2018 involved 10 drones carrying 10 bomblets each.

The ubiquity of commercial drones also raises the possibility of attacks on non-military targets unprotected by air defense networks. Is it possible to defend every potential target? Perhaps not, but Jospeh Hanacek points out in War on the Rocks that there are ways to counter or mitigate the risk of drone attacks that do not involve sophisticated and expensive defenses. Among his simple suggestions are using shotguns for point defense against small and fragile drones, improving communications among security forces, and complicating the targeting problem for would-be attackers. Perhaps the best defense against drones is merely to avoid overthinking the problem.

Assessing The Assessments Of The Military Balance In The China Seas

“If we maintain our faith in God, love of freedom, and superior global airpower, the future [of the US] looks good.” — U.S. Air Force General Curtis E. LeMay (Commander, U.S. Strategic Command, 1948-1957)

Curtis LeMay was involved in the formation of RAND Corporation after World War II. RAND created several models to measure the dynamics of the US-China military balance over time. Since 1996, this has been computed for two scenarios, differing by range from mainland China: one over Taiwan and the other over the Spratly Islands. The results of the model results for selected years can be seen in the graphic below.

The capabilities listed in the RAND study are interesting, notable in that the air superiority category, rough parity exists as of 2017. Also, the ability to attack air bases has given an advantage to the Chinese forces.

Investigating the methodology used does not yield any precise quantitative modeling examples, as would be expected in a rigorous academic effort, although there is some mention of statistics, simulation and historical examples.

The analysis presented here necessarily simplifies a great number of conflict characteristics. The emphasis throughout is on developing and assessing metrics in each area that provide a sense of the level of difficulty faced by each side in achieving its objectives. Apart from practical limitations, selectivity is driven largely by the desire to make the work transparent and replicable. Moreover, given the complexities and uncertainties in modern warfare, one could make the case that it is better to capture a handful of important dynamics than to present the illusion of comprehensiveness and precision. All that said, the analysis is grounded in recognized conclusions from a variety of historical sources on modern warfare, from the air war over Korea and Vietnam to the naval conflict in the Falklands and SAM hunting in Kosovo and Iraq. [Emphasis added].

We coded most of the scorecards (nine out of ten) using a five-color stoplight scheme to denote major or minor U.S. advantage, a competitive situation, or major or minor Chinese advantage. Advantage, in this case, means that one side is able to achieve its primary objectives in an operationally relevant time frame while the other side would have trouble in doing so. [Footnote] For example, even if the U.S. military could clear the skies of Chinese escort fighters with minimal friendly losses, the air superiority scorecard could be coded as “Chinese advantage” if the United States cannot prevail while the invasion hangs in the balance. If U.S. forces cannot move on to focus on destroying attacking strike and bomber aircraft, they cannot contribute to the larger mission of protecting Taiwan.

All of the dynamic modeling methodology (which involved a mix of statistical analysis, Monte Carlo simulation, and modified Lanchester equations) is publicly available and widely used by specialists at U.S. and foreign civilian and military universities.” [Emphasis added].

As TDI has contended before, the problem with using Lanchester’s equations is that, despite numerous efforts, no one has been able to demonstrate that they accurately represent real-world combat. So, even with statistics and simulation, how good are the results if they have relied on factors or force ratios with no relation to actual combat?

What about new capabilities?

As previously posted, the Kratos Mako Unmanned Combat Aerial Vehicle (UCAV), marketed as the “unmanned wingman,” has recently been cleared for export by the U.S. State Department. This vehicle is specifically oriented towards air-to-air combat, is stated to have unparalleled maneuverability, as it need not abide by limits imposed by human physiology. The Mako “offers fighter-like performance and is designed to function as a wingman to manned aircraft, as a force multiplier in contested airspace, or to be deployed independently or in groups of UASs. It is capable of carrying both weapons and sensor systems.” In addition, the Mako has the capability to be launched independently of a runway, as illustrated below. The price for these vehicles is three million each, dropping to two million each for an order of at least 100 units. Assuming a cost of $95 million for an F-35A, we can imagine a hypothetical combat scenario pitting two F-35As up against 100 of these Mako UCAVs in a drone swarm; a great example of the famous phrase, quantity has a quality all its own.

A battery of Kratos Aerial Target drone ready for take off. One of the advantages of the low-cost Kratos drones are their ability to get into the air quickly. [Kratos Defense]

How to evaluate the effects of these possible UCAV drone swarms?

In building up towards the analysis of all of these capabilities in the full theater, campaign level conflict, some supplemental wargaming may be useful. One game that takes a good shot at modeling these dynamics is Asian Fleet.  This is a part of the venerable Fleet Series, published by Victory Games, designed by Joseph Balkoski to model modern (that is Cold War) naval combat. This game system has been extended in recent years, originally by Command Magazine Japan, and then later by Technical Term Gaming Company.

Screenshot of Asian Fleet module by Bryan Taylor [vassalengine.org]

More to follow on how this game transpires!

TDI Friday Read: Links You May Have Missed, 30 March 2018

This week’s list of links is an odds-and-ends assortment.

David Vergun has an interview with General Stephen J. Townshend, commander of the U.S. Army Training and Doctrine Command (TRADOC) on the Army website about the need for smaller, lighter, and faster equipment for future warfare.

Defense News’s apparently inexhaustible Jen Judson details the Army’s newest forthcoming organization, “US Army’s Futures Command sets groundwork for battlefield transformation.”

At West Point’s Modern War Institute, Army Lionel Beehner, Liam Collins, Steve Ferenzi, Robert Person and Aaron Brantly have a very interesting analysis of the contemporary Russian approach to warfare, “Analyzing the Russian Way of War: Evidence from the 2008 Conflict with Georgia.”

Also at the Modern War Institute, Ethan Olberding examines ways to improve the planning skills of the U.S. Army’s junior leaders, “You Can Lead, But Can You Plan? Time to Change the Way We Develop Junior Leaders.”

Kyle Mizokami at Popular Mechanics takes a look at the state of the art in drone defenses, “Watch Microwave and Laser Weapons Knock Drones Out of the Sky.”

Jared Keller at Task & Purpose looks into the Army’s interest in upgunning its medium-weight armored vehicles, “The Army Is Eyeing This Beastly 40mm Cannon For Its Ground Combat Vehicles.”

And finally, MeritTalk, a site focused on U.S. government information technology, has posted a piece, “Pentagon Wants An Early Warning System For Hybrid Warfare,” looking at the Defense Advanced Research Projects Agency’s (DARPA) ambitious Collection and Monitoring via Planning for Active Situational Scenarios (COMPASS) program, which will incorporate AI, game theory, modeling, and estimation technologies to attempt to decipher the often subtle signs that precede a full-scale attack.

Artificial Intelligence (AI) And Warfare

Arnold Schwarzenegger and friend. [Image Credit Jordan Strauss/Invision/AP/File]

Humans are a competitive lot. With machines making so much rapid progress (see Moore’s Law), the singularity approaches—see the discussion between Michio Kaku and Ray Kurzweil, two prominent futurologists. This is the “hypothesis that the invention of artificial super intelligence (ASI) will abruptly trigger runaway technological growth, resulting in unfathomable changes to human civilization.” (Wikipedia). This was also referred to as general artificial intelligence (GAI) by The Economist, and previously discussed in this blog.

We humans also exhibit a tendency to anthropomorphize, or to endow any observed object with human qualities. The image above illustrates Arnold Schwarzenegger sizing up his robotic doppelgänger. This is further evidenced by statements made about the ability of military networks to spontaneously become self-aware:

The idea behind the Terminator films – specifically, that a Skynet-style military network becomes self-aware, sees humans as the enemy, and attacks – isn’t too far-fetched, one of the nation’s top military officers said this week. Nor is that kind of autonomy the stuff of the distant future. ‘We’re a decade or so away from that capability,’ said Gen. Paul Selva, vice chairman of the Joint Chiefs of Staff.

This exhibits a fundamental fear, and I believe a misconception, about the capabilities of these technologies. This is exemplified by Jay Tuck’s TED talk, “Artificial Intelligence: it will kill us.” His examples of AI in use today include airline and hotel revenue management, aircraft autopilot, and medical imaging. He also holds up the MQ-9 Reaper’s Argus (aka Gorgon Stare) imaging systems, as well as the X-47B Pegasus, previously discussed, as an example of modern AI, and the pinnacle in capability. Among several claims, he states that the X-47B has an optical stealth capability, which is inaccurate:

[X-47B], a descendant of an earlier killer drone with its roots in the late 1990s, is possibly the least stealthy of the competitors, owing to Northrop’s decision to build the drone big, thick and tough. Those qualities help it survive forceful carrier landings, but also make it a big target for enemy radars. Navy Capt. Jamie Engdahl, manager of the drone test program, described it as ‘low-observable relevant,’ a careful choice of words copping to the X-47B’s relative lack of stealth. (Emphasis added).

Such questions limit the veracity of these claims. I believe that this is little more than modern fear mongering, playing on ignorance. But, Mr. Tuck is not alone. From the forefront of technology, Elon Musk is often held up as an example of commercial success in the field of AI, and he recently addressed the national governors association meeting on this topic, specifically in the need for regulation in the commercial sphere.

On the artificial intelligence [AI] front, I have exposure to the most cutting edge AI, and I think people should be really concerned about it. … AI is a rare case, I think we should be proactive in terms of regulation, rather that reactive about it. Because by the time we are reactive about it, its too late. … AI is a fundamental risk to human civilization, in a way that car crashes, airplane crashes, faulty drugs or bad food were not. … In space, we get regulated by the FAA. But you know, if you ask the average person, ‘Do you want to get rid of the FAA? Do you want to take a chance on manufacturers not cutting corners on aircraft because profits were down that quarter? Hell no, that sounds terrible.’ Because robots will be able to do everything better than us, and I mean all of us. … We have companies that are racing to build AI, they have to race otherwise they are going to be made uncompetitive. … When the regulators are convinced it is safe they we can go, but otherwise, slow down.  [Emphasis added]

Mr. Musk also hinted at American exceptionalism: “America is the distillation of the human spirit of exploration.” Indeed, the link between military technology and commercial applications is an ongoing virtuous cycle. But, the kind of regulation that exists in the commercial sphere from within the national, subnational, and local governments of humankind do not apply so easily in the field of warfare, where no single authority exists. Any agreements to limit technology are a consensus-based agreement, such as a treaty.

The husky was mistakenly classified as wolf, because the classifier learned to use snow as feature. [Machine Master blog]

In a recent TEDx talk, Peter Haas describes his work in AI, and some of challenges that exist within the state of the art of this technology. As illustrated above, when asked to distinguish between a wolf and a dog, the machine classified the Husky in the above photo as a wolf. The humans developing the AI system did not know why this happened, so they asked the AI system to show the regions of the image that were used to make this decision, and the result is depicted on the right side of the image. The fact that this dog was photographed with snow in the background is a form of bias – are fact that snow exists in a photo does not yield any conclusive proof that any particular animal is a dog or a wolf.

Right now there are people – doctors, judges, accountants – who are getting information from an AI system and treating it like it was information from a trusted colleague. It is this trust that bothers me. Not because of how often AI gets it wrong; AI researchers pride themselves on the accuracy of results. It is how badly it gets it wrong when it makes a mistake that has me worried. These systems do not fail gracefully.

AI systems clearly have drawbacks, but they also have significant advantages, such as in the curation of shared model of the battlefield.

In a paper for the Royal Institute of International Affairs in London, Mary Cummings of Duke University says that an autonomous system perceives the world through its sensors and reconstructs it to give its computer ‘brain’ a model of the world which it can use to make decisions. The key to effective autonomous systems is ‘the fidelity of the world model and the timeliness of its updates.‘ [Emphasis added]

Perhaps AI systems might best be employed in the cyber domain, where their advantages are naturally “at home?” Mr. Haas noted that machines at the current time have a tough time doing simple tasks, like opening a door. As was covered in this blog, former Deputy Defense Secretary Robert Work noted this same problem, and thus called for man-machine teaming as one of the key areas of pursuit within the Third Offset Strategy.

Just as the previous blog post illustrates, “the quality of military men is what wins wars and preserves nations.” Let’s remember Paul Van Ripper’s performance in Millennium Challenge 2002:

Red, commanded by retired Marine Corps Lieutenant General Paul K. Van Riper, adopted an asymmetric strategy, in particular, using old methods to evade Blue’s sophisticated electronic surveillance network. Van Riper used motorcycle messengers to transmit orders to front-line troops and World-War-II-style light signals to launch airplanes without radio communications. Red received an ultimatum from Blue, essentially a surrender document, demanding a response within 24 hours. Thus warned of Blue’s approach, Red used a fleet of small boats to determine the position of Blue’s fleet by the second day of the exercise. In a preemptive strike, Red launched a massive salvo of cruise missiles that overwhelmed the Blue forces’ electronic sensors and destroyed sixteen warships.

We should learn lessons on the over reliance on technology. AI systems are incredibly fickle, but which offer incredible capabilities. We should question and inspect results by such systems. They do not exhibit emotions, they are not self-aware, they do not spontaneously ask questions unless specifically programmed to do so. We should recognize their significant limitations and use them in conjunction with humans who will retain command decisions for the foreseeable future.

Drones And The U.S. Navy

An X-47 Unmanned Combat Air System (UCAS) drone lands on the USS Theodore Roosevelt during a test in 2014. [Breaking Defense]

Preamble & Warning (P&W): Please forgive me, this is an acronym heavy post.

In May 2013, the U.S. Navy (USN) reached milestones by having a “drone,” or unmanned aerial vehicle (UAV) land and take-off from an aircraft carrier. This was a significant achievement in aviation, and heralded an era of combat UAVs (UCAV) being integrated into carrier air wings (CVW). This vehicle, the X-47B, was built by Northrup Grumman, under the concept of a carrier-based stealthy strike vehicle.

Ultimately, after almost three years, their decision was announced:

On 1 February 2016, after many delays over whether the [Unmanned Carrier-Launched Airborne Surveillance and Strike] UCLASS would specialize in strike or intelligence, surveillance and reconnaissance (ISR) roles, it was reported that a significant portion of the UCLASS effort would be directed to produce a Super Hornet-sized carrier-based aerial refueling tanker as the Carrier-Based Aerial-Refueling System (CBARS), with ‘a little ISR’ and some capabilities for communications relay, and strike capabilities put off to a future version of the aircraft. In July 2016, it was officially named ‘MQ-25A Stingray’.

The USN, who had just proven that they can add a stealthy UCAV to carrier flight deck operations, decided to put this new capability on the shelf, and instead refocus the efforts of the aerospace defense industry on a brand new requirement, namely …

For mission tanking, the threshold requirement is offloading 14,000 lb. of fuel to aviation assets at 500 nm from the ship, thereby greatly extending the range of the carrier air wing, including the Lockheed Martin F-35C and Boeing F/A-18 Super Hornet. The UAV must also be able to integrate with the Nimitz-class carriers, being able to safely launch and recover and not take up more space than is allocated for storage, maintenance and repairs.

Boeing has fashioned part of St. Louis Lambert International Airport into an aircraft carrier deck, complete with a mock catapult system. [Boeing]

Why did they do this?

The Pentagon apparently made this program change in order to address the Navy’s expected fighter shortfall by directing funds to buy additional F/A-18E/F Super Hornets and accelerate purchases and development of the F-35C. Having the CBARS as the first carrier-based UAV provides a less complex bridge to the future F/A-XX, should it be an autonomous strike platform. It also addresses the carriers’ need for an organic refueling aircraft, proposed as a mission for the UCLASS since 2014, freeing up the 20–30 percent of Super Hornets performing the mission in a more capable and cost effective manner than modifying the F-35, V-22 Osprey, and E-2D Hawkeye, or bringing the retired S-3 Viking back into service.

Notice within this quote the supposition that the F/A-XX would be an autonomous strike platform. This program was originally a USN-specific program to build a next-generation platform to perform both strike and air superiority missions, much like the F/A-18 aircraft are “swing role.” The US Air Force (USAF) had a separate program for a next generation air superiority aircraft called the F-X. These programs were combined by the Department of Defense (DoD) into the Next Generation Air Dominance (NGAD) program. We can tell from the name of this program that it is clearly focused on the air superiority mission, as compared to the balance of strike and superiority, implicit in the USN program.

Senator John McCain, chairman of the Senate Armed Services Committee (SASC), wrote a letter to then Secretary of Defense Ash Carter, on 2015-03-24, stating, “I strongly believe that the Navy’s first operational unmanned combat aircraft must be capable of performing a broad range of missions in contested environments as part of the carrier air wing, including precision strike as well as [ISR].” This is effectively an endorsement of the X-47B, and quite unlike the MQ-25.

I’m in agreement with Senator McCain on this. I think that a great deal of experience could have been gained by continuing the development and test of the X-47B, and possibly deploying the vehicle to the fleet.

The Navy hinted at the possibility of using the UCLASS in air-to-air engagements as a ‘flying missile magazine’ to supplement the F/A-18 Super Hornet and F-35C Lightning II as a type of ‘robotic wingman.’ Its weapons bay could be filled with AIM-120 AMRAAMs and be remotely operated by an E-2D Hawkeye or F-35C flight leader, using their own sensors and human judgment to detect, track, and direct the UAV to engage an enemy aircraft. The Navy’s Naval Integrated Fire Control-Counter Air (NIFC-CA) concept gives a common picture of the battle space to multiple air platforms through data-links, where any aircraft could fire on a target in their range that is being tracked by any sensor, so the forward deployed UCLASS would have its missiles targeted by another controller. With manned-unmanned teaming for air combat, a dedicated unmanned supersonic fighter may not be developed, as the greater cost of high-thrust propulsion and an airframe of similar size to a manned fighter would deliver a platform with comparable operating costs and still without an ability to engage on its own.

Indeed, the German Luftwaffe has completed an air combat concept study, stating that the fighter of the 2040’s will be a “stealthy drone herder”:

Interestingly the twin-engine, twin-tail stealth design would be a twin-seat design, according to Alberto Gutierrez, Head of Eurofighter Programme, Airbus DS. The second crewmember may be especially important for the FCAS concept of operations, which would see it operate in a wider battle network, potentially as a command and control asset or UCAV/UAV mission commander.

Instead, the USN has decided to banish the drones into the tanker and light ISR roles, to focus on having more Super Hornets available, and move towards integrating the F-35C into the CVW. I believe that this is a missed opportunity to move ahead to get direct front line experience in operating UCAVs as part of combat carrier operations.

U.S. Army Swarm Offensives In Future Combat

For a while now, military pundits have speculated about the role robotic drones and swarm tactics will play in future warfare. U.S. Army Captain Jules Hurst recently took a first crack at adapting drones and swarms into existing doctrine in an article in Joint Forces Quarterly. In order to move beyond the abstract, Hurst looked at how drone swarms “should be inserted into the tactical concepts of today—chiefly, the five forms of offensive maneuver recognized under Army doctrine.”

Hurst pointed out that while drone design currently remains in flux, “for assessment purposes, future swarm combatants will likely be severable into two broad categories: fire support swarms and maneuver swarms.”

In Hurst’s reckoning, the chief advantage of fire support swarms would be their capacity for overwhelming current air defense systems to deliver either human-targeted or semi-autonomous precision fires. Their long-range endurance of airborne drones also confers an ability to take and hold terrain that current manned systems do not possess.

The primary benefits of ground maneuver swarms, according to Hurst, would be their immunity from the human element of fear, giving them a resilient, persistent level of combat effectiveness. Their ability to collect real-time battlefield intelligence makes them ideal for enabling modern maneuver warfare concepts.

Hurst examines how these capabilities could be exploited through each of the Army’s current schemes of maneuver: infiltration, penetration, frontal attack, envelopment, and the turning maneuver. While concluding that “ultimately, the technological limitations and advantages of maneuver swarms and fire support swarms will determine their uses,” Hurst acknowledged the critical role Army institutional leadership must play in order to successfully utilize the new technology on the battlefield.

U.S. officers and noncommissioned officers can accelerate that comfort [with new weapons] by beginning to postulate about the use of swarms well before they hit the battlefield. In the vein of aviation visionaries Billy Mitchell and Giulio Douhet, members of the Department of Defense must look forward 10, 20, or even 30 years to when artificial intelligence allows the deployment of swarm combatants on a regular basis. It will take years of field maneuvers to perfect the employment of swarms in combat, and the concepts formed during these exercises may be shattered during the first few hours of war. Even so, the U.S. warfighting community must adopt a venture capital mindset and accept many failures for the few novel ideas that may produce game-changing results.

Trevor Dupuy would have agreed. He argued that the crucial factor in military innovation was not technology, but the organization approach to using it. Based on his assessment of historical patterns, Dupuy derived a set of preconditions necessary for the successful assimilation of new technology into warfare.

  1. An imaginative, knowledgeable leadership focused on military affairs, supported by extensive knowledge of, and competence in, the nature and background of the existing military system.
  2. Effective coordination of the nation’s economic, technological-scientific, and military resources.
    1. There must exist industrial or developmental research institutions, basic research institutions, military staffs and their supporting institutions, together with administrative arrangements for linking these with one another and with top decision-making echelons of government.
    2. These bodies must conduct their research, developmental, and testing activities according to mutually familiar methods so that their personnel can communicate, can be mutually supporting, and can evaluate each other’s results.
    3. The efforts of these institutions—in related matters—must be directed toward a common goal.
  3. Opportunity for battlefield experimentation as a basis for evaluation and analysis.

Is the U.S. Army up to the task?

TDI Friday Read: U.S. Airpower

[Image by Geopol Intelligence]

This weekend’s edition of TDI’s Friday Read is a collection of posts on the current state of U.S. airpower by guest contributor Geoffery Clark. The same factors changing the character of land warfare are changing the way conflict will be waged in the air. Clark’s posts highlight some of the way these changes are influencing current and future U.S. airpower plans and concepts.

F-22 vs. F-35: Thoughts On Fifth Generation Fighters

The F-35 Is Not A Fighter

U.S. Armed Forces Vision For Future Air Warfare

The U.S. Navy and U.S. Air Force Debate Future Air Superiority

U.S. Marine Corps Concepts of Operation with the F-35B

The State of U.S. Air Force Air Power

Fifth Generation Deterrence

 

The State of U.S. Air Force Air Power

Operation Inherent Resolve 2014. [Business Insider]

The U.S. Air Force (USAF) has fielded a formidable force, demonstrating air dominance in conflicts fought, as well as those threatened, across the globe for decades through the Cold War (1945-1991); think Strategic Air Command (SAC) under Gen Curtis LeMay. Pax Americana has been further extended to the present. A “pax” (Latin for peace) being a period of relative peace due to a preponderance of power. The French Foreign Minister Hubert Vedrine famously defined the U.S. as a “hyperpower”, or “a country that is dominant or predominant in all categories” (NY Times, 1999-02-05). The ability to project power by the U.S. military, especially by the USAF, is and was unparalleled.

According to Gen David Goldfein, Air Force Chief of Staff, “We’re everywhere. Air power has become the oxygen the joint team breathes. Have it, you don’t even think about [it]. Don’t have it, it’s all you think about. Air superiority, ISR [Intelligence, Surveillance and Reconnaissance], space, lift [airlift, or transport services] are just a few examples.”

Indeed, “Land-based forces now are going to have to penetrate denied areas to facilitate air and naval forces. This is exact opposite of what we have done for the last 70 years, where air and naval forces have enabled ground forces,” according to General Mark Milley, Chief of Staff of the U.S. Army. War on the Rocks claims “there is no end in sight to the [U.S.] Army’s dependence on airpower.”

The USAF Fights as a Joint Force

The photo above illustrates a joint team across U.S. and allied forces, by combining assets from the USAF, the U.S. Marine Corps (USMC), as well as the Royal Air Force (RAF), and Royal Australian Air Force (RAAF) into a single fighting force. But it also demonstrates this preponderance of power by the USAF, which provided almost all of the aircraft used by the operation. Pictured aircraft include (clockwise from left):

  • U-2S (USAF) – provides ISR.
  • PAC-3 (USAF) – surface-to-air missile to attack airborne targets.
  • KC-10 (USAF) – provide in-flight refueling services.
  • F-15E (USAF) – provides both air superiority and precision strike capabilities.
  • E-3D Sentry (RAF or USAF) – provides command, control, communications and computers, plus ISR, which happily forms the unique acronym C4ISR, rather than “CCCCISR”
  • F/A-18C (USMC or RAAF) – provides both air superiority and precision strike capabilities.
  • F/A-22 (USAF) – provides penetrating strike and air dominance capabilities.
  • A330 MRTT (RAF?) – provides both in-flight refueling and airlift services.
  • Emergency Medical and Firefighting ground vehicles.
  • RQ-4 Global Hawk (USAF) – Unmanned Aerial Vehicle (UAV) providing ISR.

Thus, I’d assert, we have seen some strong evidence of great plans, and more importantly a planning capability by the U.S. military, including and especially the USAF.

The USAF Faces Some Significant Challenges

According to a RAND study on the USAF pilot shortage, the real issue is experience levels in “Operational Units (i.e., those with combat responsibilities) are the only assignment options for newly trained pilots while they mature and develop their mission knowledge. Thus, these units require enough experienced pilots to supervise the development of the new pilots. As the proportion of experienced pilots in a unit drops, each one must fly more to provide essential supervision to an increasing number of new pilots. If the unit’s flying capacity cannot increase, new pilots each fly less, extending the time they need to become experienced themselves.”

Given that the career path from military pilot to airlines pilot has been in operation since the 1940’s, why should this be a critical issue now? Because the difference in pay has changed. “The Air Force believes much of the problem comes from commercial airlines that have been hiring at increased rates and can offer bigger paychecks.” All major U.S. Airlines, however, must report not only pilot quantities and salaries, but many other financial details to the Office of Airline Information (OAI), which provides this data to the public for free. Does the USAF not have the capability to analyze and manage the economics of pilot demand and supply? It seems they have been caught reacting, rather than proactively managing their most critical resource, trained human pilots.

“Drone pilots suffer a high rate of burnout, as they work 12 to 13 hour days, performing mainly intelligence, surveillance, and reconnaissance missions, but also some strikes where mistakes caused by tired eyes can cost lives.” Given the autopilot capabilities of commercial airliners, why are Remotely Piloted Aircraft (RPA) aircrews working so much? Why has autonomy not been granted to a machine for the long, boring and tedious tasks of loiter, and then a human alerted when required to make decisions? Perhaps because the RPA concept is not developed enough to allow for man-machine teaming, perhaps because military leaders do not trust technology to deliver the right alerts.

  • According to Goldfein, “I believe it’s a crisis: air superiority is not an American birthright. It’s actually something you have to fight for and maintain.”

As fighter pilots seem to be more likely to leave the USAF, these issues seem to be related. As “drones” (more properly RPA) became the star of the global war on terrorism since 2001, many USAF fighter pilots who were formerly physically flying USAF aircraft such as the F-16 were tasked with sitting in a cargo container and staring at a screen, while their inputs to controls were beamed across the world at the speed of light to the controlled drone, which was often loitering for hours over a target area that required persistent ISR. Several Hollywood movies (such as Good Kill (2014)) have been made about this twofold life of USAF pilots. Did the USAF not know that these circumstances would erode morale? Do they know why pilots sign up for service, and why they stay?

How About Battlefield Networking?

A Battle Network enabled by an F-15C with Talon HATE pod. [foxtrot alpha]

In previous posts in this blog, we’ve seen that information is a critical resource. The ability to share information on a battlefield network is the defining capability about how we will win future wars, according to Deputy Defense Secretary Robert Work. Most units in the USAF (as well as most NATO units) have the Link 16 network (depicted in blue above). This was conceived in 1967 by MITRE, demonstrated in 1973 by MITRE, and developed as the Joint Tactical Information Distribution System (JTIDS) in 1981 by what is now BAE Systems. “Fielding proceeded slowly throughout the late 1980s and early 1990s with rapid expansion (following 9/11) in preparation for Operation Enduring Freedom (Afghanistan) and Operation Iraqi Freedom.”

Not all units are equipped with Link 16 capability, especially the new stealth fighters, since broadcasting over this network gives away a units position. Instead, the F-22 was equipped with the In-Flight Data Link (IFDL), the red lines in diagram above. Since only the F-22 was equipped with this type of data link, legacy fighters like the F-15C could not communicate easily with F-22 units. Similarly, the F-35 program is being deployed with its own, the Multi-Function Advanced Data Link (MADL), which likewise preserves stealth, but also impedes communications with units not so equipped.

The difficulty and complexity of fielding a battlefield network which allows aircraft to communicate without compromising their stealth is tough, which is why Lt Col Berke stated that “these networks have yet to be created.” The Talon HATE pod is a stopgap capability, requested by the Pacific Air Forces, prototyped and deployed by Boeing Phantom Works. “With the stealthy F-22 buy truncated at 183 aircraft and F-35s being introduced into service far more slowly than planned, the Air Force is being forced to devise a connectivity regimen among these platforms to maximize their capabilities in battle.” The Talon HATE pod also includes an IRST, which the USAF has learned is effective at detecting stealth fighters.

Indeed, as reported by Aviation Week, the USAF is still in the process to rolling out Link 16 to its older tankers the KC-135, which are among the oldest aircraft still flown by the USAF. Perhaps this is a reaction to the Chinese operationalized stealth fighter, the J-20. It has recently been photographed carrying four external fuel tanks, which may give it the range to attack potentially vulnerable targets, such as tankers.