Tag Doctrine

Air Power and Drones, 2025-2050

[Credit: Financial Times]

In the recently issued 2018 National Defense Strategy, the United States acknowledged that “long-term strategic competitions with China and Russia are the principal priorities for the Department [of Defense], and require both increased and sustained investment, because of the magnitude of the threats they pose to U.S. security and prosperity today, and the potential for those threats to increase in the future.”

The strategy statement lists technologies that will be focused upon:

The drive to develop new technologies is relentless, expanding to more actors with lower barriers of entry, and moving at accelerating speed. New technologies include advanced computing, “big data” analytics, artificial intelligence, autonomy, robotics, directed energy, hypersonics, and biotechnology— the very technologies that ensure we will be able to fight and win the wars of the future… The Department will invest broadly in military application of autonomy, artificial intelligence, and machine learning, including rapid application of commercial breakthroughs, to gain competitive military advantages.” (emphasis added).

Autonomy, robotics, artificial intelligence and machine learning…these are all related to the concept of “drone swarms.” TDI has reported previously on the idea of drone swarms on land. There is indeed promise in many domains of warfare for such technology. In testimony to the Senate Armed Services Committee on the future of warfare, Mr Bryan Clark of the Center for Strategic and Budgetary Assessments argued that “America should apply new technologies to four main areas of warfare: undersea, strike, air and electromagnetic.”

Drones have certainly transformed the way that the U.S. wages war from the air. The Central Intelligence Agency (CIA) innovated, deployed and fired weapons from drones first against the Taliban in Afghanistan, less than one month after the 9/11 attacks against the U.S. homeland. Most drones today are airborne, partly because it is generally easier to navigate in the air than it is on the land, due to fewer obstacles and more uniform and predictable terrain. The same is largely true of the oceans, at least the blue water parts.

Aerial Drones and Artificial Intelligence

It is important to note that the drones in active use today by the U.S. military are actually remotely piloted Unmanned Aerial Vehicles (UAVs). With the ability to fire missiles since 2001, one could argue that these crossed the threshold into Unmanned Combat Aerial Vehicles (UCAVs), but nonetheless, they have a pilot—typically a U.S. Air Force (USAF) member, who would very much like to be flying an F-16, rather than sitting in a shipping container in the desert somewhere safe, piloting a UAV in a distant theater of war.

Given these morale challenges, work on autonomy is clearly underway. Let’s look at a forecast from The Economist, which follows the development of artificial intelligence (AI) in both the commercial and military realms.

A distinction needs to be made between “narrow” AI, which allows a machine to carry out a specific task much better than a human could, and “general” AI, which has far broader applications. Narrow AI is already in wide use for civilian tasks such as search and translation, spam filters, autonomous vehicles, high-frequency stock trading and chess-playing computers… General AI may still be at least 20 years off. A general AI machine should be able to carry out almost any intellectual task that a human is capable of.” (emphasis added)

Thus, it is reasonable to assume that the U.S. military (or others) will not field a fully automated drone, capable of prosecuting a battle without human assistance, until roughly 2038. This means that in the meantime, a human will be somewhere “in” or “on” the loop, making at least some of the decisions, especially those involving deadly force.

[Credit: The Economist]
Future Aerial Drone Roles and Missions

The CIA’s initial generation of UAVs was armed in an ad-hoc fashion; further innovation was spurred by the drive to seek out and destroy the 9/11 perpetrators. These early vehicles were designed for intelligence, reconnaissance, and surveillance (ISR) missions. In this role, drones have some big advantages over manned aircraft, including the ability to loiter for long periods. They are not quick, not very maneuverable, and as such are suited to operations in permissive airspace.

The development of UCAVs has allowed their integration into strike (air-to-ground) and air superiority (air-to-air) missions in contested airspace. UCAV strike missions could target and destroy land and sea nodes in command, control, communications, computers, intelligence, surveillance and reconnaissance (C4ISR) networks in an attempt to establish “information dominance.” They might also be targeted against assets like surface to air missiles and radars, part of an adversary anti-access/area denial (A2/AD) capability.

Given the sophistication of Russian and Chinese A2/AD networks and air forces, some focus should be placed upon developing more capable and advanced drones required to defeat these challenges. One example comes from Kratos, a drone maker, and reported on in Popular Science.

Concept art for Mako combat drone. Based on the existing BQM-167 aerial target, this drone can maneuver at forces that could kill a human pilot [Image courtesy of Kratos/Popular Science]

The Mako drone pictured above has much higher performance than some other visions of future drone swarms, which look more like paper airplanes. Given their size and numbers, they might be difficult to shoot down entirely, and this might be able to operate reasonably well within contested airspace. But, they’re not well suited for air-to-air combat, as they will not have the weapons or the speed necessary to engage with current manned aircraft in use with potential enemy air forces. Left unchecked, an adversary’s current fighters and bombers could easily avoid these types of drones and prosecute their own attacks on vital systems, installations and facilities.

The real utility of drones may lie in the unique tactic for which they are suited, swarming. More on that in my next post.

Attrition In Future Land Combat

Soldiers with Battery C, 1st Battalion, 82nd Field Artillery Regiment, 1st Brigade Combat Team, 1st Cavalry Division maneuver their Paladins through Hohenfels Training Area, Oct. 26. Photo Credit: Capt. John Farmer, 1st Brigade Combat Team, 1st Cav

[This post was originally published on June 9, 2017]

Last autumn, U.S. Army Chief of Staff General Mark Milley asserted that “we are on the cusp of a fundamental change in the character of warfare, and specifically ground warfare. It will be highly lethal, very highly lethal, unlike anything our Army has experienced, at least since World War II.” He made these comments while describing the Army’s evolving Multi-Domain Battle concept for waging future combat against peer or near-peer adversaries.

How lethal will combat on future battlefields be? Forecasting the future is, of course, an undertaking fraught with uncertainties. Milley’s comments undoubtedly reflect the Army’s best guesses about the likely impact of new weapons systems of greater lethality and accuracy, as well as improved capabilities for acquiring targets. Many observers have been closely watching the use of such weapons on the battlefield in the Ukraine. The spectacular success of the Zelenopillya rocket strike in 2014 was a convincing display of the lethality of long-range precision strike capabilities.

It is possible that ground combat attrition in the future between peer or near-peer combatants may be comparable to the U.S. experience in World War II (although there were considerable differences between the experiences of the various belligerents). Combat losses could be heavier. It certainly seems likely that they would be higher than those experienced by U.S. forces in recent counterinsurgency operations.

Unfortunately, the U.S. Defense Department has demonstrated a tenuous understanding of the phenomenon of combat attrition. Despite wildly inaccurate estimates for combat losses in the 1991 Gulf War, only modest effort has been made since then to improve understanding of the relationship between combat and casualties. The U.S. Army currently does not have either an approved tool or a formal methodology for casualty estimation.

Historical Trends in Combat Attrition

Trevor Dupuy did a great deal of historical research on attrition in combat. He found several trends that had strong enough empirical backing that he deemed them to be verities. He detailed his conclusions in Understanding War: History and Theory of Combat (1987) and Attrition: Forecasting Battle Casualties and Equipment Losses in Modern War (1995).

Dupuy documented a clear relationship over time between increasing weapon lethality, greater battlefield dispersion, and declining casualty rates in conventional combat. Even as weapons became more lethal, greater dispersal in frontage and depth among ground forces led daily personnel loss rates in battle to decrease.

The average daily battle casualty rate in combat has been declining since 1600 as a consequence. Since battlefield weapons continue to increase in lethality and troops continue to disperse in response, it seems logical to presume the trend in loss rates continues to decline, although this may not necessarily be the case. There were two instances in the 19th century where daily battle casualty rates increased—during the Napoleonic Wars and the American Civil War—before declining again. Dupuy noted that combat casualty rates in the 1973 Arab-Israeli War remained roughly the same as those in World War II (1939-45), almost thirty years earlier. Further research is needed to determine if average daily personnel loss rates have indeed continued to decrease into the 21st century.

Dupuy also discovered that, as with battle outcomes, casualty rates are influenced by the circumstantial variables of combat. Posture, weather, terrain, season, time of day, surprise, fatigue, level of fortification, and “all out” efforts affect loss rates. (The combat loss rates of armored vehicles, artillery, and other other weapons systems are directly related to personnel loss rates, and are affected by many of the same factors.) Consequently, yet counterintuitively, he could find no direct relationship between numerical force ratios and combat casualty rates. Combat power ratios which take into account the circumstances of combat do affect casualty rates; forces with greater combat power inflict higher rates of casualties than less powerful forces do.

Winning forces suffer lower rates of combat losses than losing forces do, whether attacking or defending. (It should be noted that there is a difference between combat loss rates and numbers of losses. Depending on the circumstances, Dupuy found that the numerical losses of the winning and losing forces may often be similar, even if the winner’s casualty rate is lower.)

Dupuy’s research confirmed the fact that the combat loss rates of smaller forces is higher than that of larger forces. This is in part due to the fact that smaller forces have a larger proportion of their troops exposed to enemy weapons; combat casualties tend to concentrated in the forward-deployed combat and combat support elements. Dupuy also surmised that Prussian military theorist Carl von Clausewitz’s concept of friction plays a role in this. The complexity of interactions between increasing numbers of troops and weapons simply diminishes the lethal effects of weapons systems on real world battlefields.

Somewhat unsurprisingly, higher quality forces (that better manage the ambient effects of friction in combat) inflict casualties at higher rates than those with less effectiveness. This can be seen clearly in the disparities in casualties between German and Soviet forces during World War II, Israeli and Arab combatants in 1973, and U.S. and coalition forces and the Iraqis in 1991 and 2003.

Combat Loss Rates on Future Battlefields

What do Dupuy’s combat attrition verities imply about casualties in future battles? As a baseline, he found that the average daily combat casualty rate in Western Europe during World War II for divisional-level engagements was 1-2% for winning forces and 2-3% for losing ones. For a divisional slice of 15,000 personnel, this meant daily combat losses of 150-450 troops, concentrated in the maneuver battalions (The ratio of wounded to killed in modern combat has been found to be consistently about 4:1. 20% are killed in action; the other 80% include mortally wounded/wounded in action, missing, and captured).

It seems reasonable to conclude that future battlefields will be less densely occupied. Brigades, battalions, and companies will be fighting in spaces formerly filled with armies, corps, and divisions. Fewer troops mean fewer overall casualties, but the daily casualty rates of individual smaller units may well exceed those of WWII divisions. Smaller forces experience significant variation in daily casualties, but Dupuy established average daily rates for them as shown below.

For example, based on Dupuy’s methodology, the average daily loss rate unmodified by combat variables for brigade combat teams would be 1.8% per day, battalions would be 8% per day, and companies 21% per day. For a brigade of 4,500, that would result in 81 battle casualties per day, a battalion of 800 would suffer 64 casualties, and a company of 120 would lose 27 troops. These rates would then be modified by the circumstances of each particular engagement.

Several factors could push daily casualty rates down. Milley envisions that U.S. units engaged in an anti-access/area denial environment will be constantly moving. A low density, highly mobile battlefield with fluid lines would be expected to reduce casualty rates for all sides. High mobility might also limit opportunities for infantry assaults and close quarters combat. The high operational tempo will be exhausting, according to Milley. This could also lower loss rates, as the casualty inflicting capabilities of combat units decline with each successive day in battle.

It is not immediately clear how cyberwarfare and information operations might influence casualty rates. One combat variable they might directly impact would be surprise. Dupuy identified surprise as one of the most potent combat power multipliers. A surprised force suffers a higher casualty rate and surprisers enjoy lower loss rates. Russian combat doctrine emphasizes using cyber and information operations to achieve it and forces with degraded situational awareness are highly susceptible to it. As Zelenopillya demonstrated, surprise attacks with modern weapons can be devastating.

Some factors could push combat loss rates up. Long-range precision weapons could expose greater numbers of troops to enemy fires, which would drive casualties up among combat support and combat service support elements. Casualty rates historically drop during night time hours, although modern night-vision technology and persistent drone reconnaissance might will likely enable continuous night and day battle, which could result in higher losses.

Drawing solid conclusions is difficult but the question of future battlefield attrition is far too important not to be studied with greater urgency. Current policy debates over whether or not the draft should be reinstated and the proper size and distribution of manpower in active and reserve components of the Army hinge on getting this right. The trend away from mass on the battlefield means that there may not be a large margin of error should future combat forces suffer higher combat casualties than expected.

Visualizing The Multidomain Battle Battlespace

In the latest issue of Joint Forces Quarterly, General David G. Perkins and General James M. Holmes, respectively the commanding generals of U.S. Army Training and Doctrine Command (TRADOC) and  U.S. Air Force Air Combat Command (ACC), present the results of the initial effort to fashion a unified, joint understanding of the multidomain battle (MDB) battlespace.

The thinking of the services proceeds from a basic idea:

Victory in future combat will be determined by how successfully commanders can understand, visualize, and describe the battlefield to their subordinate commands, thus allowing for more rapid decisionmaking to exploit the initiative and create positions of relative advantage.

In order to create this common understanding, TRADOC and ACC are seeking to blend the conceptualization of their respective operating concepts.

The Army’s…operational framework is a cognitive tool used to assist commanders and staffs in clearly visualizing and describing the application of combat power in time, space, and purpose… The Army’s operational and battlefield framework is, by the reality and physics of the land domain, generally geographically focused and employed in multiple echelons.

The mission of the Air Force is to fly, fight, and win—in air, space, and cyberspace. With this in mind, and with the inherent flexibility provided by the range and speed of air, space, and cyber power, the ACC construct for visualizing and describing operations in time and space has developed differently from the Army’s… One key difference between the two constructs is that while the Army’s is based on physical location of friendly and enemy assets and systems, ACC’s is typically focused more on the functions conducted by friendly and enemy assets and systems. Focusing on the functions conducted by friendly and enemy forces allows coordinated employment and integration of air, space, and cyber effects in the battlespace to protect or exploit friendly functions while degrading or defeating enemy functions across geographic boundaries to create and exploit enemy vulnerabilities and achieve a continuing advantage.

Despite having “somewhat differing perspectives on mission command versus C2 and on a battlefield framework that is oriented on forces and geography versus one that is oriented on function and time,” it turns out that the services’ respective conceptualizations of their operating concepts are not incompatible. The first cut on an integrated concept yielded the diagram above. As Perkins and Holmes point out,

The only noncommon area between these two frameworks is the Air Force’s Adversary Strategic area. This area could easily be accommodated into the Army’s existing framework with the addition of Strategic Deep Fires—an area over the horizon beyond the range of land-based systems, thus requiring cross-domain fires from the sea, air, and space.

Perkins and Holmes go on to map out the next steps.

In the coming year, the Army and Air Force will be conducting a series of experiments and initiatives to help determine the essential components of MDB C2. Between the Services there is a common understanding of the future operational environment, the macro-level problems that must be addressed, and the capability gaps that currently exist. Potential solutions require us to ask questions differently, to ask different questions, and in many cases to change our definitions.

Their expectation is that “Frameworks will tend to merge—not as an either/or binary choice—but as a realization that effective cross-domain operations on the land and sea, in the air, as well as cyber and electromagnetic domains will require a merged framework and a common operating picture.”

So far, so good. Stay tuned.

TDI Friday Read: How Do We Know What We Know About War?

The late, great Carl Sagan.

Today’s edition of TDI Friday Read asks the question, how do we know if the theories and concepts we use to understand and explain war and warfare accurately depict reality? There is certainly no shortage of explanatory theories available, starting with Sun Tzu in the 6th century BCE and running to the present. As I have mentioned before, all combat models and simulations are theories about how combat works. Military doctrine is also a functional theory of warfare. But how do we know if any of these theories are actually true?

Well, one simple way to find out if a particular theory is valid is to use it to predict the outcome of the phenomenon it purports to explain. Testing theory through prediction is a fundamental aspect of the philosophy of science. If a theory is accurate, it should be able to produce a reasonable accurate prediction of future behavior.

In his 2016 article, “Can We Predict Politics? Toward What End?” Michael D. Ward, a Professor of Political Science at Duke University, made a case for a robust effort for using prediction as a way of evaluating the thicket of theory populating security and strategic studies. Dropping invalid theories and concepts is important, but there is probably more value in figuring out how and why they are wrong.

Screw Theory! We Need More Prediction in Security Studies!

Trevor Dupuy and TDI publicly put their theories to the test in the form of combat casualty estimates for the 1991 Gulf Way, the U.S. intervention in Bosnia, and the Iraqi insurgency. How well did they do?

Predictions

Dupuy himself argued passionately for independent testing of combat models against real-world data, a process known as validation. This is actually seldom done in the U.S. military operations research community.

Military History and Validation of Combat Models

However, TDI has done validation testing of Dupuy’s Quantified Judgement Model (QJM) and Tactical Numerical Deterministic Model (TNDM). The results are available for all to judge.

Validating Trevor Dupuy’s Combat Models

I will conclude this post on a dissenting note. Trevor Dupuy spent decades arguing for more rigor in the development of combat models and analysis, with only modest success. In fact, he encountered significant skepticism and resistance to his ideas and proposals. To this day, the U.S. Defense Department seems relatively uninterested in evidence-based research on this subject. Why?

David Wilkinson, Editor-in-Chief of the Oxford Review, wrote a fascinating blog post looking at why practitioners seem to have little actual interest in evidence-based practice.

Why evidence-based practice probably isn’t worth it…

His argument:

The problem with evidence based practice is that outside of areas like health care and aviation/technology is that most people in organisations don’t care about having research evidence for almost anything they do. That doesn’t mean they are not interesting in research but they are just not that interested in using the research to change how they do things – period.

His explanation for why this is and what might be done to remedy the situation is quite interesting.

Happy Holidays to all!

The Principle Of Mass On The Future Battlefield

Men of the U.S. Army 369th Infantry Regiment “Harlem’s Hellfighters,”in action at Séchault on September 29, 1918 during the Meuse-Argonne Offensive. [Wikimedia]

Given the historical trend toward battlefield dispersion as a result of the increasing lethality of weapons, how will the principle of mass apply in future warfare? I have been wondering about this for a while in the context of the two principle missions the U.S. Army must plan and prepare for, combined arms maneuver and wide area security. As multi-domain battle advocates contend, future combat will place a premium on smaller, faster, combat formations capable of massing large amounts of firepower. However, wide area security missions, such as stabilization and counterinsurgency, will continue to demand significant numbers of “boots on the ground,” the traditional definition of mass on the battlefield. These seemingly contradictory requirements are contributing to the Army’s ongoing “identity crisis” over future doctrine, training, and force structure in an era of budget austerity and unchanging global security responsibilities.

Over at the Australian Army Land Power Forum, Lieutenant Colonel James Davis addresses the question generating mass in combat in the context of the strategic challenges that army faces. He cites traditional responses by Western armies to this problem, “Regular and Reserve Force partnering through a standing force generation cycle, indigenous force partnering through deployed training teams and Reserve mobilisation to reconstitute and regenerate deployed units.”

Davis also mentions AirLand Battle and “blitzkrieg” as examples of tactical and operational approaches to limiting the ability of enemy forces to mass on the battlefield. To this he adds “more recent operational concepts, New Generation Warfare and Multi Domain Battle, [that] operate in the air, electromagnetic spectrum and cyber domain and to deny adversary close combat forces access to the battle zone.” These newer concepts use Cyber Electromagnetic Activities (CEMA), Information Operations, long range Joint Fires, and Robotic and Autonomous systems (RAS) to attack enemy efforts to mass.

The U.S. Army is moving rapidly to develop, integrate and deploy these capabilities. Yet, however effectively new doctrine and technology may influence mass in combined arms maneuver combat, it is harder to see how they can mitigate the need for manpower in wide area security missions. Some countries may have the strategic latitude to emphasize combined arms maneuver over wide area security, but the U.S. Army cannot afford to do so in the current security environment. Although conflicts emphasizing combined arms maneuver may present the most dangerous security challenge to the U.S., contingencies involving wide area security are far more likely.

How this may be resolved is an open question at this point in time. It is also a demonstration as to how tactical and operational considerations influence strategic options.

TDI Friday Read: The Lanchester Equations

Frederick W. Lanchester (1868-1946), British engineer and author of the Lanchester combat attrition equations. [Lanchester.com]

Today’s edition of TDI Friday Read addresses the Lanchester equations and their use in U.S. combat models and simulations. In 1916, British engineer Frederick W. Lanchester published a set of calculations he had derived for determining the results of attrition in combat. Lanchester intended them to be applied as an abstract conceptualization of aerial combat, stating that he did not believe they were applicable to ground combat.

Due to their elegant simplicity, U.S. military operations researchers nevertheless began incorporating the Lanchester equations into their land warfare computer combat models and simulations in the 1950s and 60s. The equations are the basis for many models and simulations used throughout the U.S. defense community today.

The problem with using Lanchester’s equations is that, despite numerous efforts, no one has been able to demonstrate that they accurately represent real-world combat.

Lanchester equations have been weighed….

Really…..Lanchester?

Trevor Dupuy was critical of combat models based on the Lanchester equations because they cannot account for the role behavioral and moral (i.e. human) factors play in combat.

Human Factors In Warfare: Interaction Of Variable Factors

He was also critical of models and simulations that had not been tested to see whether they could reliably represent real-world combat experience. In the modeling and simulation community, this sort of testing is known as validation.

Military History and Validation of Combat Models

The use of unvalidated concepts, like the Lanchester equations, and unvalidated combat models and simulations persists. Critics have dubbed this the “base of sand” problem, and it continues to affect not only models and simulations, but all abstract theories of combat, including those represented in military doctrine.

https://dupuyinstitute.dreamhosters.com/2017/04/10/wargaming-multi-domain-battle-the-base-of-sand-problem/

How Does the U.S. Army Calculate Combat Power? ¯\_(ツ)_/¯

The constituents of combat power as described in current U.S. military doctrine. [The Lightning Press]

One of the fundamental concepts of U.S. warfighting doctrine is combat power. The current U.S. Army definition is “the total means of destructive, constructive, and information capabilities that a military unit or formation can apply at a given time. (ADRP 3-0).” It is the construct commanders and staffs are taught to use to assess the relative effectiveness of combat forces and is woven deeply throughout all aspects of U.S. operational thinking.

To execute operations, commanders conceptualize capabilities in terms of combat power. Combat power has eight elements: leadership, information, mission command, movement and maneuver, intelligence, fires, sustainment, and protection. The Army collectively describes the last six elements as the warfighting functions. Commanders apply combat power through the warfighting functions using leadership and information. [ADP 3-0, Operations]

Yet, there is no formal method in U.S. doctrine for estimating combat power. The existing process is intentionally subjective and largely left up to judgment. This is problematic, given that assessing the relative combat power of friendly and opposing forces on the battlefield is the first step in Course of Action (COA) development, which is at the heart of the U.S. Military Decision-Making Process (MDMP). Estimates of combat power also figure heavily in determining the outcomes of wargames evaluating proposed COAs.

The Existing Process

The Army’s current approach to combat power estimation is outlined in Field Manual (FM) 6-0 Commander and Staff Organization and Operations (2014). Planners are instructed to “make a rough estimate of force ratios of maneuver units two levels below their echelon.” They are then directed to “compare friendly strengths against enemy weaknesses, and vice versa, for each element of combat power.” It is “by analyzing force ratios and determining and comparing each force’s strengths and weaknesses as a function of combat power” that planners gain insight into tactical and operational capabilities, perspectives, vulnerabilities, and required resources.

That is it. Planners are told that “although the process uses some numerical relationships, the estimate is largely subjective. Assessing combat power requires assessing both tangible and intangible factors, such as morale and levels of training.” There is no guidance as to how to determine force ratios [numbers of troops or weapons systems?]. Nor is there any description of how to relate force calculations to combat power. Should force strengths be used somehow to determine a combat power value? Who knows? No additional doctrinal or planning references are provided.

Planners then use these subjective combat power assessments as they shape potential COAs and test them through wargaming. Although explicitly warned not to “develop and recommend COAs based solely on mathematical analysis of force ratios,” they are invited at this stage to consult a table of “minimum historical planning ratios as a starting point.” The table is clearly derived from the ubiquitous 3-1 rule of combat. Contrary to what FM 6-0 claims, neither the 3-1 rule nor the table have a clear historical provenance or any sort of empirical substantiation. There is no proven validity to any of the values cited. It is not even clear whether the “historical planning ratios” apply to manpower, firepower, or combat power.

During this phase, planners are advised to account for “factors that are difficult to gauge, such as impact of past engagements, quality of leaders, morale, maintenance of equipment, and time in position. Levels of electronic warfare support, fire support, close air support, civilian support, and many other factors also affect arraying forces.” FM 6-0 offers no detail as to how these factors should be measured or applied, however.

FM 6-0 also addresses combat power assessment for stability and civil support operations through troop-to-task analysis. Force requirements are to be based on an estimate of troop density, a “ratio of security forces (including host-nation military and police forces as well as foreign counterinsurgents) to inhabitants.” The manual advises that most “most density recommendations fall within a range of 20 to 25 counterinsurgents for every 1,000 residents in an area of operations. A ratio of twenty counterinsurgents per 1,000 residents is often considered the minimum troop density required for effective counterinsurgency operations.”

While FM 6-0 acknowledges that “as with any fixed ratio, such calculations strongly depend on the situation,” it does not mention that any references to force level requirements, tie-down ratios, or troop density were stripped from both Joint and Army counterinsurgency manuals in 2013 and 2014. Yet, this construct lingers on in official staff planning doctrine. (Recent research challenged the validity of the troop density construct but the Defense Department has yet to fund any follow-on work on the subject.)

The Army Has Known About The Problem For A Long Time

The Army has tried several solutions to the problem of combat power estimation over the years. In the early 1970s, the U.S. Army Center for Army Analysis (CAA; known then as the U.S. Army Concepts & Analysis Agency) developed the Weighted Equipment Indices/Weighted Unit Value (WEI/WUV or “wee‑wuv”) methodology for calculating the relative firepower of different combat units. While WEI/WUV’s were soon adopted throughout the Defense Department, the subjective nature of the method gradually led it to be abandoned for official use.

In the 1980s and 1990s, the U.S. Army Command & General Staff College (CGSC) published the ST 100-9 and ST 100-3 student workbooks that contained tables of planning factors that became the informal basis for calculating combat power in staff practice. The STs were revised regularly and then adapted into spreadsheet format in the late 1990s. The 1999 iteration employed WEI/WEVs as the basis for calculating firepower scores used to estimate force ratios. CGSC stopped updating the STs in the early 2000s, as the Army focused on irregular warfare.

With the recently renewed focus on conventional conflict, Army staff planners are starting to realize that their planning factors are out of date. In an attempt to fill this gap, CGSC developed a new spreadsheet tool in 2012 called the Correlation of Forces (COF) calculator. It apparently drew upon analysis done by the U.S. Army Training and Doctrine Command Analysis Center (TRAC) in 2004 to establish new combat unit firepower scores. (TRAC’s methodology is not clear, but if it is based on this 2007 ISMOR presentation, the scores are derived from runs by an unspecified combat model modified by factors derived from the Army’s unit readiness methodology. If described accurately, this would not be an improvement over WEI/WUVs.)

The COF calculator continues to use the 3-1 force ratio tables. It also incorporates a table for estimating combat losses based on force ratios (this despite ample empirical historical analysis showing that there is no correlation between force ratios and casualty rates).

While the COF calculator is not yet an official doctrinal product, CGSC plans to add Marine Corps forces to it for use as a joint planning tool and to incorporate it into the Army’s Command Post of the Future (CPOF). TRAC is developing a stand-alone version for use by force developers.

The incorporation of unsubstantiated and unvalidated concepts into Army doctrine has been a long standing problem. In 1976, Huba Wass de Czege, then an Army major, took both “loosely structured and unscientific analysis” based on intuition and experience and simple counts of gross numbers to task as insufficient “for a clear and rigorous understanding of combat power in a modern context.” He proposed replacing it with a analytical framework for analyzing combat power that accounted for both measurable and intangible factors. Adopting a scrupulous method and language would overcome the simplistic tactical analysis then being taught. While some of the essence of Wass de Czege’s approach has found its way into doctrinal thinking, his criticism of the lack of objective and thorough analysis continues to echo (here, here, and here, for example).

Despite dissatisfaction with the existing methods, little has changed. The problem with this should be self-evident, but I will give the U.S. Naval War College the final word here:

Fundamentally, all of our approaches to force-on-force analysis are underpinned by theories of combat that include both how combat works and what matters most in determining the outcomes of engagements, battles, campaigns, and wars. The various analytical methods we use can shed light on the performance of the force alternatives only to the extent our theories of combat are valid. If our theories are flawed, our analytical results are likely to be equally wrong.

TDI Friday Read: The Validity Of The 3-1 Rule Of Combat

Canadian soldiers going “over the top” during the First World War. [History.com]

Today’s edition of TDI Friday Read addresses the question of force ratios in combat. How many troops are needed to successfully attack or defend on the battlefield? There is a long-standing rule of thumb that holds that an attacker requires a 3-1 preponderance over a defender in combat in order to win. The aphorism is so widely accepted that few have questioned whether it is actually true or not.

Trevor Dupuy challenged the validity of the 3-1 rule on empirical grounds. He could find no historical substantiation to support it. In fact, his research on the question of force ratios suggested that there was a limit to the value of numerical preponderance on the battlefield.

Trevor Dupuy and the 3-1 Rule

Human Factors In Warfare: Diminishing Returns In Combat

TDI President Chris Lawrence has also challenged the 3-1 rule in his own work on the subject.

Force Ratios in Conventional Combat

The 3-to-1 Rule in Histories

Aussie OR

Comparing Force Ratios to Casualty Exchange Ratios

The validity of the 3-1 rule is no mere academic question. It underpins a great deal of U.S. military policy and warfighting doctrine. Yet, the only time the matter was seriously debated was in the 1980s with reference to the problem of defending Western Europe against the threat of Soviet military invasion.

The Great 3-1 Rule Debate

It is probably long past due to seriously challenge the validity and usefulness of the 3-1 rule again.

U.S. Army Swarm Offensives In Future Combat

For a while now, military pundits have speculated about the role robotic drones and swarm tactics will play in future warfare. U.S. Army Captain Jules Hurst recently took a first crack at adapting drones and swarms into existing doctrine in an article in Joint Forces Quarterly. In order to move beyond the abstract, Hurst looked at how drone swarms “should be inserted into the tactical concepts of today—chiefly, the five forms of offensive maneuver recognized under Army doctrine.”

Hurst pointed out that while drone design currently remains in flux, “for assessment purposes, future swarm combatants will likely be severable into two broad categories: fire support swarms and maneuver swarms.”

In Hurst’s reckoning, the chief advantage of fire support swarms would be their capacity for overwhelming current air defense systems to deliver either human-targeted or semi-autonomous precision fires. Their long-range endurance of airborne drones also confers an ability to take and hold terrain that current manned systems do not possess.

The primary benefits of ground maneuver swarms, according to Hurst, would be their immunity from the human element of fear, giving them a resilient, persistent level of combat effectiveness. Their ability to collect real-time battlefield intelligence makes them ideal for enabling modern maneuver warfare concepts.

Hurst examines how these capabilities could be exploited through each of the Army’s current schemes of maneuver: infiltration, penetration, frontal attack, envelopment, and the turning maneuver. While concluding that “ultimately, the technological limitations and advantages of maneuver swarms and fire support swarms will determine their uses,” Hurst acknowledged the critical role Army institutional leadership must play in order to successfully utilize the new technology on the battlefield.

U.S. officers and noncommissioned officers can accelerate that comfort [with new weapons] by beginning to postulate about the use of swarms well before they hit the battlefield. In the vein of aviation visionaries Billy Mitchell and Giulio Douhet, members of the Department of Defense must look forward 10, 20, or even 30 years to when artificial intelligence allows the deployment of swarm combatants on a regular basis. It will take years of field maneuvers to perfect the employment of swarms in combat, and the concepts formed during these exercises may be shattered during the first few hours of war. Even so, the U.S. warfighting community must adopt a venture capital mindset and accept many failures for the few novel ideas that may produce game-changing results.

Trevor Dupuy would have agreed. He argued that the crucial factor in military innovation was not technology, but the organization approach to using it. Based on his assessment of historical patterns, Dupuy derived a set of preconditions necessary for the successful assimilation of new technology into warfare.

  1. An imaginative, knowledgeable leadership focused on military affairs, supported by extensive knowledge of, and competence in, the nature and background of the existing military system.
  2. Effective coordination of the nation’s economic, technological-scientific, and military resources.
    1. There must exist industrial or developmental research institutions, basic research institutions, military staffs and their supporting institutions, together with administrative arrangements for linking these with one another and with top decision-making echelons of government.
    2. These bodies must conduct their research, developmental, and testing activities according to mutually familiar methods so that their personnel can communicate, can be mutually supporting, and can evaluate each other’s results.
    3. The efforts of these institutions—in related matters—must be directed toward a common goal.
  3. Opportunity for battlefield experimentation as a basis for evaluation and analysis.

Is the U.S. Army up to the task?

Command and Combat Effectiveness: The Case of the British 51st Highland Division

Soldiers of the British 51st Highland Division take cover in bocage in Normandy, 1944. [Daily Record (UK)]

While Trevor Dupuy’s concept of combat effectiveness has been considered controversial by some, he was hardly the only one to observe that throughout history, some military forces have fought more successfully on the battlefield than others. While the sources of victory and defeat in battle remain a fertile, yet understudied topic, there is a growing literature on the topic of military effectiveness in the fields of strategic and security studies.

Anthony King, a professor in War Studies at the University of Warwick, has published an outstanding article in the most recent edition of British Journal of Military History, “Why did 51st Highland Division Fail? A case-study in command and combat effectiveness.” In it, he examined military command and combat effectiveness through the experience of the British 51st Highland Division in the 1944 Normandy Campaign. Most usefully, King developed a definition of military command that clarifies its relationship to combat effectiveness: “The function of a commander is to maximise combat power by defining achievable missions and, then, orchestrating subordinates into a cohesive whole committed to mission accomplishment.”

Defining Military Command

In order to analyze the relationship between command and combat effectiveness, King sought to “define the concept of command and to specify its relationship to management and leadership.” The construct he developed drew upon the work of Peter Drucker, an Austrian-born American business consultant and writer who is considered by many to be “the founder of modern management.” From Drucker, King distilled a definition of the function and process of military command: “command always consists of three elements: mission definition, mission management and mission motivation.”

As King explained, “When command is understood in this way, its connection to combat effectiveness begins to become clear.”

[C]ommand is an institutional solution to an organizational problem; it generates cohesion in a formation. Specifically, by uniting decision-making authority in one person and one role, a large military force is able to unite subordinate units, whose troops are not co-present with each other and who, in most cases, do not know each other. Crucially, the combat effectiveness of a formation, as a formation, is substantially dependent upon the ability of its commander to synchronise its disparate efforts in order to generate collective effects. Skillful command has a galvanising influence on a military force; by orchestrating the activities of subordinate units and motivating troops, command is able to create a level of combat power, which supervenes the capabilities of each of the parts. A well-commanded force has properties, which exceed those of its constituent units, fighting alone.

It is through the orchestration, synchronization, and motivation of effort, King concluded, that “command and combat effectiveness are immediately connected. Command fuses a formation together and increases its determination to fulfil its missions.”

Assessing the Combat Effectiveness of the 51st Division

The rest of King’s article is a detailed assessment of the combat effectiveness of the 51st Highland Division in Normandy in June and July 1944 using this military command construct. Observers at the time noted a decline in the division’s combat performance, which had been graded quite highly in North Africa and Sicily. The one obvious difference was the replacement of Major General Douglas Wimberley with Major General Charles Bullen-Smith in August 1943. After concluding that the 51st Division was no longer battleworthy, the commander of the British 21st Army Group, General Bernard Montgomery personally relieved Bullen-Smith in late July 1944.

In reviewing Bullen-Smith’s performance, King concluded that

Although a number of factors contributed to the struggles of the Highland Division in Normandy, there is little doubt that the shortcomings of its commander, Major General Charles Bullen-Smith, were the critical factor. Charles Bullen-Smith failed to fulfill the three essential functions required of a commander… Bullen-Smith’s inadequacies are highly suggestive of a direct relationship between command and combat effectiveness; they demonstrate how command can augment or undermine combat performance.

King’s approach to military studies once again demonstrates the relevance of multi-disciplinary analysis based on solid historical research. His military command model should prove to be a very useful tool for analyzing the elements of combat effectiveness and assessing combat power. Along with Dr. Jonathan Fennell’s work on measuring morale, among others, it appears that good progress is being made on the study of human factors in combat and military operations, at least in the British academic community (even if Tom Ricks thinks otherwise).