Tag combat models

The Elements of Trevor Dupuy’s Theory of Combat

Trevor Dupuy’s combat models (the Quantified Judgement Model (QJM) and the Tactical Numerical Deterministic Model (TNDM)) are formal expressions of his theory of combat. Dupuy provided an extensive discussion of the basis for his theory in his books, particularly Understanding War: History and Theory of Combat (NOVA Publications, 1987). While many are familiar with his models, fewer are aware of the concepts that he based it upon. This will be the first in a series of posts looking at those elements.

As Dupuy explained,

As a starting point for an explanation of a scientific theory, it is useful to define fundamental terms, to state and explain critical assumptions, and to establish—or limit—the scope of the discussion that follows. The definitions and explanations that follow are generally consistent with usage in the military and analytical communities, and with definitions that have been formulated for its work by The Military Conflict Institute. However, I have in some instances modified or restated these to conform to my own ideas and usage. [Dupuy, Understanding Combat, 63]

The basic elements of his theory of combat are:

Definition of Military Combat
The Hierarchy of Combat
The Conceptual Components of Combat
The Scope of Theory
Definition of a Theory of Combat

These will each be discussed in future posts.

Dupuy’s Verities: The Complexities of Combat

“The Battle of Leipzig, 16-19 October 1813” by A.I. Zauerweid (1783-1844) [Wikimedia]
The thirteenth and last of Trevor Dupuy’s Timeless Verities of Combat is:

Combat is too complex to be described in a single, simple aphorism.

From Understanding War (1987):

This is amply demonstrated by the preceding [verities]. All writers on military affairs (including this one) need periodically to remind themselves of this. In military analysis it is often necessary to focus on some particular aspect of combat. However, the results of such closely focused analyses must the be evaluated in the context of the brutal, multifarious, overlapping realities of war.

Trevor Dupuy was sometimes accused of attempting to reduce war to a mathematical equation. A casual reading of his writings might give that impression, but anyone who honestly engages with his ideas quickly finds this to be an erroneous conclusion. Yet, Dupuy believed the temptation to simplify and abstract combat and warfare to be common enough that he he embedded a warning against doing so into his basic theory on the subject. He firmly believed that human behavior comprises the most important aspect of combat, yet it is all too easy to miss the human experience of war figuring who lost or won and why, and counts of weapons, people, and casualties. As a military historian, he was keenly aware that the human stories behind the numbers—however imperfectly recorded and told—tell us more about the reality of war than mere numbers on their own ever will.

Dupuy’s Verities: Combat Power =/= Firepower

A U.S. 11th Marines 75mm pack howitzer and crew on Guadalcanal, September or October, 1942. The lean condition of the crewmembers indicate that they haven’t been getting enough nutrition during this period. [Wikipedia]

The ninth of Trevor Dupuy’s Timeless Verities of Combat is:

Superior Combat Power Always Wins.

From Understanding War (1987):

Military history demonstrates that whenever an outnumbered force was successful, its combat power was greater than that of the loser. All other things being equal, God has always been on the side of the heaviest battalions and always will be.

In recent years two or three surveys of modern historical experience have led to the finding that relative strength is not a conclusive factor in battle outcome. As we have seen, a superficial analysis of historical combat could support this conclusion. There are a number of examples of battles won by the side with inferior numbers. In many battles, outnumbered attackers were successful.

These examples are not meaningful, however, until the comparison includes the circumstances of the battles and opposing forces. If one take into consideration surprise (when present), relative combat effectiveness of the opponents, terrain features, and the advantage of defensive posture, the result may be different. When all of the circumstances are quantified and applied to the numbers of troops and weapons, the side with the greater combat power on the battlefield is always seen to prevail.

The concept of combat power is foundational to Dupuy’s theory of combat. He did not originate it; the notion that battle encompasses something more than just “physics-based” aspects likely originated with British theorist J.F.C. Fuller during World War I and migrated into U.S. Army thinking via post-war doctrinal revision. Dupuy refined and sharpened the Army’s vague conceptualization of it in the first iterations of his Quantified Judgement Model (QJM) developed in the 1970s.

Dupuy initially defined his idea of combat power in formal terms, as an equation in the QJM:

P = (S x V x CEV)

When:

P = Combat Power
S = Force Strength
V = Environmental and Operational Variable Factors
CEV = Combat Effectiveness Value

Essentially, combat power is the product of:

  • force strength as measured in his models through the Theoretical/Operational Lethality Index (TLI/OLI), a firepower scoring method for comparing the lethality of weapons relative to each other;
  • the intangible environmental and operational variables that affect each circumstance of combat; and
  • the intangible human behavioral (or moral) factors that determine the fighting quality of a combat force.

Dupuy’s theory of combat power and its functional realization in his models have two virtues. First, unlike most existing combat models, it incorporates the effects of those intangible factors unique to each engagement or battle that influence combat outcomes, but are not readily measured in physical terms. As Dupuy argued, combat consists of more than duels between weapons systems. A list of those factors can be found below.

Second, the analytical research in real-world combat data done by him and his colleagues allowed him to begin establishing the specific nature combat processes and their interaction that are only abstracted in other combat theories and models. Those factors and processes for which he had developed a quantification hypothesis are denoted by an asterisk below.

Dupuy’s Verities: The Inefficiency of Combat

The “Mud March” of the Union Army of the Potomac, January 1863.

The twelfth of Trevor Dupuy’s Timeless Verities of Combat is:

Combat activities are always slower, less productive, and less efficient than anticipated.

From Understanding War (1987):

This is the phenomenon that Clausewitz called “friction in war.” Friction is largely due to the disruptive, suppressive, and dispersal effects of firepower upon an aggregation of people. This pace of actual combat operations will be much slower than the progress of field tests and training exercises, even highly realistic ones. Tests and exercises are not truly realistic portrayals of combat, because they lack the element of fear in a lethal environment, present only in real combat. Allowances must be made in planning and execution for the effects of friction, including mistakes, breakdowns, and confusion.

While Clausewitz asserted that the effects of friction on the battlefield could not be measured because they were largely due to chance, Dupuy believed that its influence could, in fact, be gauged and quantified. He identified at least two distinct combat phenomena he thought reflected measurable effects of friction: the differences in casualty rates between large and small sized forces, and diminishing returns from adding extra combat power beyond a certain point in battle. He also believed much more research would be necessary to fully understand and account for this.

Dupuy was skeptical of the accuracy of combat models that failed to account for this interaction between operational and human factors on the battlefield. He was particularly doubtful about approaches that started by calculating the outcomes of combat between individual small-sized units or weapons platforms based on the Lanchester equations or “physics-based” estimates, then used these as inputs for brigade and division-level-battles, the results of which in turn were used as the basis for determining the consequences of theater-level campaigns. He thought that such models, known as “bottom up,” hierarchical, or aggregated concepts (and the prevailing approach to campaign combat modeling in the U.S.), would be incapable of accurately capturing and simulating the effects of friction.

Dupuy’s Verities: The Effects of Firepower in Combat

A German artillery barrage falling on Allied trenches, probably during the Second Battle of Ypres in 1915, during the First World War. [Wikimedia]

The eleventh of Trevor Dupuy’s Timeless Verities of Combat is:

Firepower kills, disrupts, suppresses, and causes dispersion.

From Understanding War (1987):

It is doubtful if any of the people who are today writing on the effect of technology on warfare would consciously disagree with this statement. Yet, many of them tend to ignore the impact of firepower on dispersion, and as a consequence they have come to believe that the more lethal the firepower, the more deaths, disruption, and suppression it will cause. In fact, as weapons have become more lethal intrinsically, their casualty-causing capability has either declined or remained about the same because of greater dispersion of targets. Personnel and tank loss rates of the 1973 Arab-Israeli War, for example, were quite similar to those of intensive battles of World War II and the casualty rates in both of these wars were less than in World War I. (p. 7)

Research and analysis of real-world historical combat data by Dupuy and TDI has identified at least four distinct combat effects of firepower: infliction of casualties (lethality), disruption, suppression, and dispersion. All of them were found to be heavily influenced—if not determined—by moral (human) factors.

Again, I have written extensively on this blog about Dupuy’s theory about the historical relationship between weapon lethality, dispersion on the battlefield, and historical decline in average daily combat casualty rates. TDI President Chris Lawrence has done further work on the subject as well.

TDI Friday Read: Lethality, Dispersion, And Mass On Future Battlefields

Human Factors In Warfare: Dispersion

Human Factors In Warfare: Suppression

There appears to be a fundamental difference in interpretation of the combat effects of firepower between Dupuy’s emphasis on the primacy of human factors and Defense Department models that account only for the “physics-based” casualty-inflicting capabilities of weapons systems. While U.S. Army combat doctrine accounts for the interaction of firepower and human behavior on the battlefield, it has no clear method for assessing or even fully identifying the effects of such factors on combat outcomes.

TDI Friday Read: Engaging The Phalanx

The December 2018 issue of Phalanx, a periodical journal published by The Military Operations Research Society (MORS), contains an article by Jonathan K. Alt, Christopher Morey, and Larry Larimer, entitled “Perspectives on Combat Modeling.” (the article is paywalled, but limited public access is available via JSTOR).

Their article was written partly as a critical rebuttal to a TDI blog post originally published in April 2017, which discussed an issue of which the combat modeling and simulation community has long been aware but slow to address, known as the “Base of Sand” problem.

Wargaming Multi-Domain Battle: The Base Of Sand Problem

In short, because so little is empirically known about the real-world structures of combat processes and the interactions of these processes, modelers have been forced to rely on the judgement of subject matter experts (SMEs) to fill in the blanks. No one really knows if the blend of empirical data and SME judgement accurately represents combat because the modeling community has been reluctant to test its models against data on real world experience, a process known as validation.

TDI President Chris Lawrence subsequently published a series of blog posts responding to the specific comments and criticisms leveled by Alt, Morey, and Larimer.

How are combat models and simulations tested to see if they portray real-world combat accurately? Are they actually tested?

Engaging the Phalanx

How can we know if combat simulations adhere to strict standards established by the DoD regarding validation? Perhaps the validation reports can be released for peer review.

Validation

Some claim that models of complex combat behavior cannot really be tested against real-world operational experience, but this has already been done. Several times.

Validating Attrition

If only the “physics-based aspects” of combat models are empirically tested, do those models reliably represent real-world combat with humans or only the interactions of weapons systems?

Physics-based Aspects of Combat

Is real-world historical operational combat experience useful only for demonstrating the capabilities of combat models, or is it something the models should be able to reliably replicate?

Historical Demonstrations?

If a Subject Matter Expert (SME) can be substituted for a proper combat model validation effort, then could not a SME simply be substituted for the model? Should not all models be considered expert judgement quantified?

SMEs

What should be done about the “Base of Sand” problem? Here are some suggestions.

Engaging the Phalanx (part 7 of 7)

Persuading the military operations research community of the importance of research on real-world combat experience in modeling has been an uphill battle with a long history.

Diddlysquat

And the debate continues…

Engaging the Phalanx (part 7 of 7)

Hopefully this is my last post on the subject (but I suspect not, as I expect a public response from the three TRADOC authors). This is in response to the article in the December 2018 issue of the Phalanx by Alt, Morey and Larimer (see Part 1, Part 2, Part 3, Part 4, Part 5, Part 6). The issue here is the “Base of Sand” problem, which is what the original blog post that “inspired” their article was about:

Wargaming Multi-Domain Battle: The Base Of Sand Problem

While the first paragraph of their article addressed this blog post and they reference Paul Davis’ 1992 Base of Sand paper in their footnotes (but not John Stockfish’s paper, which is an equally valid criticism), they then do not discuss the “Base of Sand” problem further. They do not actually state whether this is a problem or not a problem. I gather by this notable omission that in fact they do understand that it is a problem, but being employees of TRADOC they are limited as to what they can publicly say. I am not.

I do address the “Base of Sand” problem in my book War by Numbers, Chapter 18. It has also been addressed in a few other posts on this blog. We are critics because we do not see significant improvement in the industry. In some cases, we are seeing regression.

In the end, I think the best solution for the DOD modeling and simulation community is not to “circle the wagons” and defend what they are currently doing, but instead acknowledge the limitations and problems they have and undertake a corrective action program. This corrective action program would involve: 1) Properly addressing how to measure and quantify certain aspects of combat (for example: Breakpoints) and 2) Validating these aspects and the combat models these aspects are part of by using real-world combat data. This would be an iterative process, as you develop and then test the model, then further develop it, and then test it again. This moves us forward. It is a more valued approach than just “circling the wagons.” As these models and simulations are being used to analyze processes that may or may not make us fight better, and may or may not save American service members lives, then I think it is important enough to do right. That is what we need to be focused on, not squabbling over a blog post (or seven).

Historians and the Early Era of U.S. Army Operations Research

While perusing Charles Shrader’s fascinating history of the U.S. Army’s experience with operations research (OR), I came across several references to the part played by historians and historical analysis in early era of that effort.

The ground forces were the last branch of the Army to incorporate OR into their efforts during World War II, lagging behind the Army Air Forces, the technical services, and the Navy. Where the Army was a step ahead, however, was in creating a robust wartime historical field history documentation program. (After the war, this enabled the publication of the U.S. Army in World War II series, known as the “Green Books,” which set a new standard for government sponsored military histories.)

As Shrader related, the first OR personnel the Army deployed forward in 1944-45 often crossed paths with War Department General Staff Historical Branch field historian detachments. They both engaged in similar activities: collecting data on real-world combat operations, which was then analyzed and used for studies and reports written for the use of the commands to which they were assigned. The only significant difference was in their respective methodologies, with the historians using historical methods and the OR analysts using mathematical and scientific tools.

History and OR after World War II

The usefulness of historical approaches to collecting operational data did not go unnoticed by the OR practitioners, according to Shrader. When the Army established the Operations Research Office (ORO) in 1948, it hired a contingent of historians specifically for the purpose of facilitating research and analysis using WWII Army records, “the most likely source for data on operational matters.”

When the Korean War broke out in 1950, ORO sent eight multi-disciplinary teams, including the historians, to collect operational data and provide analytical support for U.S. By 1953, half of ORO’s personnel had spent time in combat zones. Throughout the 1950s, about 40-43% of ORO’s staff was comprised of specialists in the social sciences, history, business, literature, and law. Shrader quoted one leading ORO analyst as noting that, “there is reason to believe that the lawyer, social scientist or historian is better equipped professionally to evaluate evidence which is derived from the mind and experience of the human species.”

Among the notable historians who worked at or with ORO was Dr. Hugh M. Cole, an Army officer who had served as a staff historian for General George Patton during World War II. Cole rose to become a senior manager at ORO and later served as vice-president and president of ORO’s successor, the Research Analysis Corporation (RAC). Cole brought in WWII colleague Forrest C. Pogue (best known as the biographer of General George C. Marshall) and Charles B. MacDonald. ORO also employed another WWII field historian, the controversial S. L. A. Marshall, as a consultant during the Korean War. Dorothy Kneeland Clark did pioneering historical analysis on combat phenomena while at ORO.

The Demise of ORO…and Historical Combat Analysis?

By the late 1950s, considerable institutional friction had developed between ORO, the Johns Hopkins University (JHU)—ORO’s institutional owner—and the Army. According to Shrader,

Continued distrust of operations analysts by Army personnel, questions about the timeliness and focus of ORO studies, the ever-expanding scope of ORO interests, and, above all, [ORO director] Ellis Johnson’s irascible personality caused tensions that led in August 1961 to the cancellation of the Army’s contract with JHU and the replacement of ORO with a new, independent research organization, the Research Analysis Corporation [RAC].

RAC inherited ORO’s research agenda and most of its personnel, but changing events and circumstances led Army OR to shift its priorities away from field collection and empirical research on operational combat data in favor of the use of modeling and wargaming in its analyses. As Chris Lawrence described in his history of federally-funded Defense Department “think tanks,” the rise and fall of scientific management in DOD, the Vietnam War, social and congressional criticism, and an unhappiness by the military services with the analysis led to retrenchment in military OR by the end of the 60s. The Army sold RAC and created its own in-house Concepts Analysis Agency (CAA; now known as the Center for Army Analysis).

By the early 1970s, analysts, such as RAND’s Martin Shubik and Gary Brewer, and John Stockfisch, began to note that the relationships and processes being modeled in the Army’s combat simulations were not based on real-world data and that empirical research on combat phenomena by the Army OR community had languished. In 1991, Paul Davis and Donald Blumenthal gave this problem a name: the “Base of Sand.”

Validating Attrition

Continuing to comment on the article in the December 2018 issue of the Phalanx by Alt, Morey and Larimer (this is part 3 of 7; see Part 1, Part 2)

On the first page (page 28) in the third column they make the statement that:

Models of complex systems, especially those that incorporate human behavior, such as that demonstrated in combat, do not often lend themselves to empirical validation of output measures, such as attrition.

Really? Why can’t you? If fact, isn’t that exactly the model you should be validating?

More to the point, people have validated attrition models. Let me list a few cases (this list is not exhaustive):

1. Done by Center for Army Analysis (CAA) for the CEM (Concepts Evaluation Model) using Ardennes Campaign Simulation Study (ARCAS) data. Take a look at this study done for Stochastic CEM (STOCEM): https://apps.dtic.mil/dtic/tr/fulltext/u2/a489349.pdf

2. Done in 2005 by The Dupuy Institute for six different casualty estimation methodologies as part of Casualty Estimation Methodologies Studies. This was work done for the Army Medical Department and funded by DUSA (OR). It is listed here as report CE-1: http://www.dupuyinstitute.org/tdipub3.htm

3. Done in 2006 by The Dupuy Institute for the TNDM (Tactical Numerical Deterministic Model) using Corps and Division-level data. This effort was funded by Boeing, not the U.S. government. This is discussed in depth in Chapter 19 of my book War by Numbers (pages 299-324) where we show 20 charts from such an effort. Let me show you one from page 315:

 

So, this is something that multiple people have done on multiple occasions. It is not so difficult that The Dupuy Institute was not able to do it. TRADOC is an organization with around 38,000 military and civilian employees, plus who knows how many contractors. I think this is something they could also do if they had the desire.

 

Validation

Continuing to comment on the article in the December 2018 issue of the Phalanx by Jonathan Alt, Christopher Morey and Larry Larimer (this is part 2 of 7; see part 1 here).

On the first page (page 28) top of the third column they make the rather declarative statement that:

The combat simulations used by military operations research and analysis agencies adhere to strict standards established by the DoD regarding verification, validation and accreditation (Department of Defense, 2009).

Now, I have not reviewed what has been done on verification, validation and accreditation since 2009, but I did do a few fairly exhaustive reviews before then. One such review is written up in depth in The International TNDM Newsletter. It is Volume 1, No. 4 (February 1997). You can find it here:

http://www.dupuyinstitute.org/tdipub4.htm

The newsletter includes a letter dated 21 January 1997 from the Scientific Advisor to the CG (Commanding General)  at TRADOC (Training and Doctrine Command). This is the same organization that the three gentlemen who wrote the article in the Phalanx work for. The Scientific Advisor sent a letter out to multiple commands to try to flag the issue of validation (letter is on page 6 of the newsletter). My understanding is that he received few responses (I saw only one, it was from Leavenworth). After that, I gather there was no further action taken. This was a while back, so maybe everything has changed, as I gather they are claiming with that declarative statement. I doubt it.

This issue to me is validation. Verification is often done. Actual validations are a lot rarer. In 1997, this was my list of combat models in the industry that had been validated (the list is on page 7 of the newsletter):

1. Atlas (using 1940 Campaign in the West)

2. Vector (using undocumented turning runs)

3. QJM (by HERO using WWII and Middle-East data)

4. CEM (by CAA using Ardennes Data Base)

5. SIMNET/JANUS (by IDA using 73 Easting data)

 

Now, in 2005 we did a report on Casualty Estimation Methodologies (it is report CE-1 list here: http://www.dupuyinstitute.org/tdipub3.htm). We reviewed the listing of validation efforts, and from 1997 to 2005…nothing new had been done (except for a battalion-level validation we had done for the TNDM). So am I now to believe that since 2009, they have actively and aggressively pursued validation? Especially as most of this time was in a period of severely declining budgets, I doubt it. One of the arguments against validation made in meetings I attended in 1987 was that they did not have the time or budget to spend on validating. The budget during the Cold War was luxurious by today’s standards.

If there have been meaningful validations done, I would love to see the validation reports. The proof is in the pudding…..send me the validation reports that will resolve all doubts.