Tag Air power

Japan’s Grand Strategy and Military Forces (II)

Japanese Maritime Self-Defense Force (JMSDF) ships and the U.S.S. Ronald Reagan Carrier Strike Group conduct Annual Exercise 2016. [U.S. Navy]

In my first post on Japan’s grand strategy, I examined its “free and open” Indo-Pacific policy and briefly reviewed its armed forces—nominally “self-defense forces (SDF)”—as well as the legal reasons for this euphemism, and the Japanese government’s plans to clarify this constitutional conundrum.

The next several posts in this series will focus on a general overview of the Japanese Maritime Self-Defense Force (JMSDF), why this branch is considered primary (or dominant), some history in terms of how it came to be, the current missions, defense concepts, current capabilities and how they have been envisioned, how they are deployed, and a look ahead about options under consideration.

According to an excellent article in the Naval War College Review by Toshi Yoshihara, “the Japanese often describe their key national characteristic in nautical terms, with the familiar notion that ‘Japan is a small island nation lacking resource endowments and is thus highly dependent upon seaborne commerce for its well-being.’”

A few key facts, according to Jane’s Defense: Sea Module:

  • Japan has the world’s seventh-largest Exclusive Economic Zone (EEZ).
  • Japan operates a large commercial fishing fleet of about 200,000 vessels.
  • 90% of Japan’s oil is shipped from the Middle East.
  • 60% of Japan’s food is imported by sea.

The JMSDF is therefore tasked with the fundamental naval missions of defending Japan from maritime invasion and securing the sea lines of communication (SLOC). A recent article in the Japan News, spelled out why SLOC protection is vital for Japan:

[T]he South China Sea is a key sea-lane for Japan. If it became necessary to take a detour around the South China Sea, the additional time and fuel costs are estimated to be 1½ days and $120,000 for travel via the Sunda Strait, and three days and $240,000 for travel via the Lombok Strait. Both of these straits can be perilous, with strong tidal currents, sunken ships and shoals. If either were to see a large increase in marine traffic, chaos is predicted to ensue.

We can see this concern clearly in the recent JMSDF exercise deployment through the South China Sea, the straits of Sunda and Malacca, and onwards to India.

[The Japan News (Yomiuri Shimbun)]

For Indo Southeast Asia Deployment 2018 (ISEAD18) from 26 August to 30 October 2018, JMSDF vessels JS Kaga (DDH 184), JS Inazuma (DD105), JS Suzutsuki (DD117), stopped at Subic Bay, Philippines; Jakarta, Indonesia; Colombo, Sri Lanka; Visakhapatnam, India; and Changi, Singapore. The exercise included naval various exercises with port call countries, as well as the British and U.S. navies. This activity yielded important agreements, such as the maritime surveillance pact between Japan and India to share information on Chinese ship locations.

Japan’s Grand Strategy and Military Forces (I)

[Source: Consulate-General of Japan, Sydney]

This is the first in a series of Orders of Battle (OOB) posts, which will cover Japan, the neighboring and regional powers in East Asia, as well as the major global players, with a specific viewpoint on their military forces in East Asia and the Greater Indo-Pacific. The idea is to provide a catalog of forces and capabilities, but also to provide some analysis of how those forces are linked to the nation’s strategy.

The geographic term “Indo-Pacific” is a relatively new one, and referred to by name in the grand strategy as detailed by the Japanese Ministry of Foreign Affairs (MOFA) in April 2017. It also aligns with the strategy and terminology used by US Defense Secretary James Mattis at the Shangri-La conference in June 2018. Dr. Michael J. Green has a good primer on the evolution of Japan’s grand strategy, along with a workable definition of the term:

What is “grand strategy”? It is the integration of all instruments of national power to shape a more favorable external environment for peace and prosperity. These comprehensive instruments of power are diplomatic, informational, military and economic. Successful grand strategies are most important in peacetime, since war may be considered the failure of strategy.

Nonetheless, the seminal speech by Vice President Pence regarding China policy on 4 October 2018, had an articulation of Chinese grand strategy: “Beijing is employing a whole-of-government approach, using political, economic, and military tools, as well as propaganda, to advance its influence and benefit its interests in the United States.” The concept of grand strategy is not new; Thucydides is often credited with the first discussion of this concept in History of the Peloponnesian War (431-404 BCE). It is fundamentally about the projection of power in all its forms.

With the Focus on the Indo-Pacific Strategy, What About the Home Islands? 

[Source: Japanese Ministry of Defense (MOD) ]

The East Asian region has some long simmering conflicts, legacies from past wars, such as World War II (or Great Pacific War) (1937-1945), the Korean War (1950-1953), and the Chinese Civil War (1921-1947). These conflicts led to static and stable borders, across which a “military balance” is often referred to, and publications from think tanks often refer to this, for example the Institute for International and Strategic Studies (IISS) offers a publication with this title. The points emphasized by IISS in the 2018 edition are “new arms orders and deliveries graphics and essays on Chinese and Russian air-launched weapons, artificial intelligence and defence, and Russian strategic-force modernisation.”

So, the Japanese military has two challenges, maintain the balance of power at home, that is playing defense, with neighbors who are changing and deploying new capabilities that have a material effect on this balance. And, as seen above Japan is working to build an offense as part of the new grand strategy, and military forces play a role.

Given the size and capability of the Japanese military forces, it is possible to project power  at great distances from the Japanese home waters. Yet, as a legacy from the Great Pacific War, the Japanese do not technically have armed forces. The constitution, imposed by Americans, officially renounces war as a sovereign right of the nation.

In July 2014, the constitution was officially ”re-interpreted” to allow collective self-defense. The meaning was that if the American military was under attack, for example in Guam, nearby Japanese military units could not legally engage with the forces attacking the Americans, even though they are allied nations, and conduct numerous training exercises together, that is, they train to fight together. This caused significant policy debate in Japan.

More recently, as was an item of debate in the national election in September 2018, the legal status of the SDF is viewed as requiring clarification, with some saying they are altogether illegal. “It’s time to tackle a constitutional revision,” Abe said in a victory speech.

The original defense plan was for the American military to defend Japan. The practical realities of the Cold War and the Soviet threat to Japan ended up creating what are technically “self-defense forces” (SDF) in three branches:

  • Japan Ground Self-Defense Forces (JGSDF)
  • Japan Maritime Self-Defense Forces (JGSDF)
  • Japan Air Self-Defense Forces (JASDF)

In the next post, these forces will be cataloged, with specific capabilities linked to Japanese strategy. As a quick preview, the map below illustrates the early warning radar sites, airborne early warning aircraft, and fighter-interceptor aircraft, charged with the mission to maintain a balance of power in the air, as Russian and Chinese air forces challenge the sovereignty of Japanese airspace. With the Russians, this is an old dance from the Cold War, but recently the Chinese have gotten into this game as well.

[Source: J-Wings magazine, December 2018]

Drones: The People’s Weapon?

The DJI Matrice 600 commercial drone for professional aerial photography. Available for $4,600, a pair of these drones were allegedly used in an assassination attempt on Venezuelan President Nicolás Maduro in August 2018. [Wired]

Last week, the Russian Ministry of Defense claimed that its military air defense assets had shot down 45 drones in attempted attacks on Khmeimim Air Base, the main Russian military installation in Syria. The frequency of these attacks were increasing since the first one in January, according to Major General Igor Konashenkov. Five drones had been downed in the three days preceding the news conference.

Konashenkov asserted that although the drones appeared technologically primitive, they were actually quite sophisticated, with a range of up to 100 kilometers (60 miles). While the drones were purportedly to be piloted by Syrian rebels from Idlib Provence, the Russians have implied that they required outside assistance to assemble them.

The use of commercial off-the shelf (COTS) or modified off-the-shelf (MOTS) aerial drones by non-state actors for actions ranging from precision bombing attacks on combat troops, to terrorism, to surveillance of law enforcement, appears to be gaining in popularity.

Earlier this month, a pair of commercial drones armed with explosives were used in an alleged assassination attempt on Venezuelan President Nicolás Maduro. Daesh fighters in Syria and Iraq have been using drones for reconnaissance and to drop explosives and bombs on opposition forces.

According to Kathy Gilsinan in The Atlantic,

In 2015, Reuters reported that a protester flew “a drone carrying radioactive sand from the Fukushima nuclear disaster onto the prime minister’s office, though the amount of radiation was minimal.” Mexican cartels have used drones to smuggle drugs and, in one instance, to land disabled grenades on a local police chief’s property. Last summer, a drone delivered an active grenade to an ammunition dump in Ukraine, which Kyle Mizokami of Popular Mechanics reported caused a billion dollars’ worth of damage.

Patrick Turner reported for Defense One that a criminal gang employed drones to harass an FBI hostage rescue team observing an unfolding situation outside a large U.S. city in 2017.

The U.S. Defense Department has been aware for some time of the potential effectiveness of drones, particularly the specter of massed drone “swarm” attacks. In turn, the national security community and the defense industry have turned their attention to potential countermeasures.

As Joseph Trevithick reported in The Drive, the Russians have been successful thus far in thwarting drone attacks in Syria using air defense radars, Pantsir-S1 short-range air defense systems, and electronic warfare systems. These attacks have not involved more than a handful of drones at a time, however. The initial Syrian rebel drone attack on Khmeimim Air Base in January 2018 involved 10 drones carrying 10 bomblets each.

The ubiquity of commercial drones also raises the possibility of attacks on non-military targets unprotected by air defense networks. Is it possible to defend every potential target? Perhaps not, but Jospeh Hanacek points out in War on the Rocks that there are ways to counter or mitigate the risk of drone attacks that do not involve sophisticated and expensive defenses. Among his simple suggestions are using shotguns for point defense against small and fragile drones, improving communications among security forces, and complicating the targeting problem for would-be attackers. Perhaps the best defense against drones is merely to avoid overthinking the problem.

Security On The Cheap: Whither Security Force Assistance (SFA)?

A U.S. Army Special Forces weapons sergeant observes a Niger Army soldier during marksmanship training as part of Exercise Flintlock 2017 in Diffa, Niger, February 28, 2017. [U.S. Army/SFC Christopher Klutts/AFRICOM]

Paul Staniland, a professor of political science at the University of Chicago, has a new article in The Washington Post‘s Monkey Cage blog that contends that the U.S. is increasingly relying on a strategy of “violence management” in dealing with the various counterinsurgency, counterterrorism, and stability conflicts (i.e. “small wars”) it is involved with around the world.

As he describes it,

America’s “violence management” strategy relies on light ground forces, airpower and loose partnerships with local armed actors. Its aim is to degrade and disrupt militant organizations within a chaotic, fractured political landscape, not to commit large numbers of forces and resources to building robust new governments.

…Violence management sidesteps politics in favor of sustained military targeting. This approach takes for granted high levels of political disorder, illiberal and/or fractured local regimes, and protracted conflicts. The goal is disrupting militant organizations without trying to build new states, spur economic development, or invest heavily in post-conflict reconstruction.

…It has three core elements: a light U.S. ground force commitment favoring special forces, heavy reliance on airpower and partnerships of convenience with local militias, insurgents, and governments.

…Politically, this strategy reduces both costs and commitments. America’s wars stay off the front pages, the U.S. can add or drop local partners as it sees fit, and U.S. counterterror operations remain opaque.

Staniland details the risks associated with this strategy but does not assess its effectiveness. He admits to ambivalence on that in an associated discussion on Twitter.

Whither SFA?

Partnering with foreign government, organizations, and fighters to counter national security threats is officially known by the umbrella terms Security Force Assistance in U.S. government policy terminology. It is intended to help defend host nations from external and internal threats, and encompasses foreign internal defense (FID), counterterrorism (CT), counterinsurgency (COIN), and stability operations. The U.S. has employed this approach in various forms since World War II.

Has it been effective? Interestingly enough, this question has not been seriously examined. The best effort so far is a study done by Stephen Biddle, Julia Macdonald, and Ryan Baker, “Small Footprint, Small Payoff: The Military Effectiveness of Security Force Assistance,” published the Journal of Strategic Studies earlier this year. It concluded:

We find important limitations on SFA’s military utility, stemming from agency problems arising from systematic interest misalignment between the US and its typical partners. SFA’s achievable upper bound is modest and attainable only if US policy is intrusive and conditional, which it rarely is. For SFA, small footprints will usually mean small payoffs.

A Mixed Recent Track Record

SFA’s recent track record has been mixed. It proved conditionally successful countering terrorists and insurgents in the Philippines and in the coalition effort to defeat Daesh in Iraq and Syria; and it handed a black eye to Russian sponsored paramilitary forces in Syria earlier this year. However, a train and advice mission for the moderate Syrian rebels failed in 2015; four U.S. Army Special Forces soldiers died in an ambush during a combined patrol in Niger in October 2017; there are recurring cases of U.S.-trained indigenous forces committing human rights abuses; and the jury remains out on the fate of Afghanistan.

The U.S. Army’s proposed contribution to SFA, the Security Forces Assistance Brigade, is getting its initial try-out in Afghanistan right now. The initial reports indicate that it has indeed boosted SFA capacity there. What remains to be seen is whether that will make a difference. The 1st SFAB suffered its first combat casualties earlier this month when Corporal Joseph Maciel was killed and two others were wounded in an insider attack at Tarin Kowt in Uruzgan province.

Will a strategy of violence management prove successful over the longer term? Stay tuned…

Details Of U.S. Engagement With Russian Mercenaries In Syria Remain Murky

UNDISCLOSED LOCATION, SYRIA (May 15, 2017)— U.S. Marines fortify a machine gun pit around their M777-A2 Howitzer in Syria, May 15, 2017. The unit has been conducting 24-hour all-weather fire support for Coalition’s local partners, the Syrian Democratic Forces, as part of Combined Joint Task Force-Operation Inherent Resolve. CJTF-OIR is the global coalition to defeat ISIS in Iraq and Syria. (U.S. Marine Corps photo by Sgt. Matthew Callahan)

Last week, the New York Times published an article by Thomas Gibbons-Neff that provided a detailed account of the fighting between U.S-advised Kurdish and Syrian militia forces and Russian mercenaries and Syrian and Arab fighters near the city of Deir Ezzor in eastern Syria on 7 February 2018. Gibbons-Neff stated the account was based on newly obtained documents and interviews with U.S. military personnel.

While Gibbons-Neff’s reporting fills in some details about the action, it differs in some respects to previous reporting, particularly a detailed account by Christoph Reuter, based on interviews from participants and witnesses in Syria, published previously in Spiegel Online.

  • According to Gibbons-Neff, the U.S. observed a buildup of combat forces supporting the regime of Syrian President Bashar al Assad in Deir Ezzor, south of the Euphrates River, which separated them from U.S.-backed Kurdish and Free Syrian militia forces and U.S. Special Operations Forces (SOF) and U.S. Marine Corps elements providing advice and assistance north of the river.
  • The pro-regime forces included “some Syrian government soldiers and militias, but American military and intelligence officials have said a majority were private Russian paramilitary mercenaries — and most likely a part of the Wagner Group, a company often used by the Kremlin to carry out objectives that officials do not want to be connected to the Russian government.”
  • After obtaining assurances from the Russian military chain-of-command in Syria that the forces were not theirs, Secretary of Defense James Mattis ordered “for the force, then, to be annihilated.”
  • Gibbons-Neff’s account focuses on the fighting that took place on the night of 7-8 February in the vicinity of a U.S. combat outpost located near a Conoco gas plant north of the Euphrates. While the article mentions the presence of allied Kurdish and Syrian militia fighters, it implies that the target of the pro-regime force was the U.S. outpost. It does not specify exactly where the pro-regime forces concentrated or the direction they advanced.
  • This is in contrast to Reuter’s Spiegel Online account, which reported a more complex operation. This included an initial probe across a bridge northwest of the Conoco plant on the morning of 7 February by pro-regime forces that included no Russians, which was repelled by warning shots from American forces.
  • After dark that evening, this pro-regime force attempted to cross the Euphrates again across a bridge to the southeast of the Conoco plant at the same time another pro-regime force advanced along the north bank of the Euphrates toward the U.S./Kurdish/Syrian forces from the town of Tabiya, southeast of the Conoco plant. According to Reuter, U.S. forces engaged both of these pro-regime advances north of the Euphrates.
  • While the Spiegel Online article advanced the claim that Russian mercenary forces were not leading the pro-regime attacks and that the casualties they suffered were due to U.S. collateral fire, Gibbons-Neff’s account makes the case that the Russians comprised at least a substantial part of at least one of the forces advancing on the U.S./Kurdish/Syrian bases and encampments in Deir Ezzor.
  • Based on documents it obtained, the Times asserts that 200-300 “pro-regime” personnel were killed out of an overall force of 500. Gibbons-Neff did not attempt to parse out the Russian share of these, but did mention that accounts in Russian media have risen from four dead as initially reported, to later claims of “perhaps dozens” of killed and wounded. U.S. government sources continue to assert that most of the casualties were Russian.
  • It is this figure of 200-300 killed that I have both found problematic in the past. A total of 200-300 killed and wounded overall seems far more likely, with approximately 100 dead and 100-200 wounded out of the much larger overall force of Russian mercenaries, Syrian government troops, and tribal militia fighters involved in the fighting.

Motivation for the Operation Remains Unclear

While the details of the engagement remain ambiguous, the identity of those responsible for directing the attacks and the motivations for doing so are hazy as well. In late February, CNN and the Washington Post reported that U.S. intelligence had detected communications between Yevgeny Prigozhin—a Russian businessman with reported ties to President Vladimir Putin, the Ministry of Defense, and Russian mercenaries—and Russian and Syrian officials in the weeks leading up to the attack. One such intercept alleges that Prigozhin informed a Syrian official in January that he had secured permission from an unidentified Russian minister to move forward with a “fast and strong” initiative in Syria in early February.

Prigozhin was one of 13 individuals and three companies indicted by special counsel Robert Mueller on 16 February 2018 for funding and guiding a Russian government effort to interfere with the 2016 U.S. presidential election.

If the Deir Ezzor operation was indeed a clandestine operation sanctioned by the Russian government, the motivation remains mysterious. Gibbons-Neff’s account implies that the operation was a direct assault on a U.S. military position by a heavily-armed and equipped combat force, an action that all involved surely understood beforehand would provoke a U.S. military reaction. Even if the attack was instead aimed at taking the Conoco gas plant or forcing the Kurdish and Free Syrian forces out of Deir Ezzor, the attackers surely must have known the presence of U.S. military forces would elicit the same response.

Rueter’s account of a more complex operations suggests that the attack was a probe to test the U.S. response to armed action aimed at the U.S.’s Kurdish and Free Syrian proxy forces. If so, it was done very clumsily. The build-up of pro-regime forces telegraphed the effort in advance and the force itself seems to have been tailored for combat rather than reconnaissance. The fact that the U.S. government inquired with the Russian military leadership in Syria in advance about the provenance of the force build-up should have been a warning that any attempt at surprise had been compromised.

Whether the operation was simply intended to obtain a tactical advantage or to probe the resolution of U.S. involvement in Syria, the outcome bears all the hallmarks of a major miscalculation. Russian “hybrid warfare” tactics sustained a decisive reverse, while the effectiveness of U.S. military capabilities received a decided boost. Russian and U.S. forces and their proxies continue to spar using information operations, particularly electronic warfare, but they have not directly engaged each other since. The impact of this may be short-lived however, depending on whether or not U.S. President Donald J. Trump carries through with his intention announced in early April to withdraw U.S. forces from eastern Syria.

Air Combat And Technology

Any model of air combat needs to address the effect of weapons on the opposing forces.  In the Dupuy Air Combat Model (DACM), this was rifled bullets fired from machine guns, as well as small caliber cannon in the 20-30 millimeter (mm) class.  Such was the state of air combat in World War II.  This page is an excellent, in-depth analysis of the fighter guns and cannon.  Of course, technology has effects beyond firepower.  One of the most notable technologies to go into active use during World War II was radar, contributing to the effectiveness of the Royal Air Force (RAF), successfully holding off the Wehrmacht’s Luftwaffe in the Battle of Britain.

Since that time, driven by “great power competition”, technology continues to advance the art of warfare in the air.  This happened in several notable stages during the Cold War, and was on display in subsequent contemporary conflicts when client or proxy states fought on behalf of the great powers.  Examples include well-known conflicts, such as the Korean and Vietnam conflicts, but also the conflicts between the Arabs and Israelis.  In the Korean War, archives now illustrate than Russian pilots secretly flew alongside North Korean and Chinese pilots against the allied forces.

Stages in technology are often characterized by generation.  Many of the features that are associated with the generations are driven by the Cold War arms race, and the back and forth development cycles and innovation cycles by the aircraft designers.  This was evident in comments by Aviation Week’s Bill Sweetman, remarking that the Jas-39 Grippen is actually a sixth generation fighter, based upon the alternative focus on maintainability, operability from short runways / austere airbases (or roadways!), the focus on cost reduction, but most importantly, software: “The reason that the JAS 39E may earn a Gen 6 tag is that it has been designed with these issues in mind. Software comes first: The new hardware runs Mission System 21 software, the latest roughly biennial release in the series that started with the JAS 39A/B.”

Upon close inspection of the DACM parameters, we can observe a few important data elements and metadata definitions: avionics (aka software & hardware), and sensor performance.  Those two are about data and information.  A concise method to assign values to these parameters is needed.  The U.S. Air Force (USAF) Air Combat Command (ACC) has used the generation of fighters as a proxy for this in the past, at least at a notional level:

[Source: 5th Generation Fighters, Lt Gen Hawk Carlisle, USAF ACC]

The Fleet Series game that has been reviewed in previous posts has a different method.  The Air-to-Air Combat Resolution Table does not seem to resonate well, as the damage effects are imposed against either one side or the other.  This does not jive with the stated concerns of the USAF, which has been worried about an exchange in which both Red and Blue forces are destroyed or eliminated in a mutual fashion, with a more or less one-for-one exchange ratio.

The Beyond Visual Range (BVR) version, named Long Range Air-to-Air (LRAA) combat in Asian Fleet, is a better model of this, in which each side rolls a die to determine the effect of long range missiles, and each side may take losses on non-stealthy units, as the stealthy units are immune to damage at BVR.

One important factor that the Fleet Series combat process does resolve is a solid determination of which side “holds” the airspace, and this is capable of using other support aircraft, such as AWACS, tankers, reconnaissance, etc.  Part of this determination is the relative morale of the opposing forces.  These effects have been clearly evident in air campaigns such as the strategic bombing campaign on Germany and Japan in the latter portion of World War II.

Dealing with this conundrum, I decided to relax by watching some dogfight videos on YouTube, Dogfights Greatest Air Battles, and this was rather entertaining, it included a series of engagements in aerial combat, taken from the exploits of American aces over the course of major wars:

  1. Eddie Rickenbacker, flying a Spad 13 in World War I,
  2. Clarence Emil “Bud” Anderson, flying a P-51B “Old Crow” in European skies during World War II, flying 67 missions in P-51Ds, 35 missions in F-80s and 121 missions in F-86s. He wrote “No Guts, No Glory,” a how to manual with lots of graphics of named maneuvers like the “Scissors.”
  3. Frederick Corbin “Boots” Blesse, flying a F-86 Sabre in “MiG Alley” in North Korea close to the Chinese border,
  4. Several engagements and interviews of aces from the Vietnam War:
    1. Steve Ritchie, who said “Surprise is a key element.” Previously discussed.
    2. Robin Olds – a triple ace in both WWII (P-38 and P-51) and Vietnam (F-4), and the mastermind of Operation Bolo, a fantastic application of deception.
    3. Randy “Duke” Cunningham and William P “Irish” Discol, flying an F-4 Phantom, “Showtime 100”, and up against North Vietnamese MiG-17s.

An interesting paraphrase by Cunningham of Manfred von Richthofen, the Red Baron’s statement: “When he sees the enemy, he attacks and kills, everything else is rubbish.”  What Richthofen said (according to skygod.com), was “The duty of the fighter pilot is to patrol his area of the sky, and shoot down any enemy fighters in that area. Anything else is rubbish.” Richtofen would not let members of his Staffel strafe troops in the trenches.

The list above is a great reference, and it got me to consider an alternative form of generation, including the earlier wars, and the experiences gained in those wars.  Indeed, we can press on in time to include the combat performance of the US and Allied militaries in the first Gulf War, 1990, as previously discussed.

There was a reference to the principles of aerial combat, such as the Dicta Boelcke:

  1. Secure the benefits of aerial combat (speed, altitude, numerical superiority, position) before attacking. Always attack from the sun.
  2. If you start the attack, bring it to an end.
  3. Fire the machine gun up close and only if you are sure to target your opponent.
  4. Do not lose sight of the enemy.
  5. In any form of attack, an approach to the opponent from behind is required.
  6. If the enemy attacks you in a dive, do not try to dodge the attack, but turn to the attacker.
  7. If you are above the enemy lines, always keep your own retreat in mind.
  8. For squadrons: In principle attack only in groups of four to six. If the fight breaks up in noisy single battles, make sure that not many comrades pounce on an opponent.

Appendix A – my own attempt to classify the generations of jet aircraft, in an attempt to rationalize the numerous schemes … until I decided that it was a fool’s errand:

  • Generation Zero:
    • World War II, 1948 Arab Israeli conflict
    • Blue: Spitfire, P-51 Mustang,
    • Red: Bf-109, FW-190, Mitsubishi Zero/George
    • Propeller engines, machine guns & cannons
  • First Generation:
    • Korean War, China & Taiwan conflicts
    • Blue: F-86 Sabre,
    • Red: MiG-15, Me-262?
    • Jet engines, swept wings, machine guns & cannons, early air-to-air missiles
  • Second Generation –
    • 1967 and Cuban Missile Crisis
    • Blue: F-100, F-102, F-104, F-5, F-8
    • Grey: Mirage III, Mirage F1
    • Red: MiG-19, MiG-21
    • Multi-mach speeds, improved air-to-air missiles, but largely within-visual range (WVR), early radar warning receivers (RWR), early countermeasures.
  • Third Generation:
    • 1973 Arab Israeli Wars, Vietnam War
    • Blue: F-4 Phantom, F-111 Ardvark, F-106?
    • Grey: Mirage III
    • Red: MiG-23, MiG-25, Su-15
    • Look-down/Shoot-down capability, radar-guided missiles, Beyond Visual Range (BVR), Identification Friend or Foe (IFF), all-aspect infrared missiles.
  • Fourth Generation:
    • 1980’s Cold War, 1990 Gulf War, 1982 Lebanon, 1980-88 Iran-Iraq War
    • Blue: F-15 Eagle, F-16 Viper, F-14 Tomcat, F/A-18 Hornet
    • Grey: Mirage 2000
    • Red: MiG-29, MiG-31, Su-27/30
  • Fourth Plus Generation:
    • 2003 Gulf War, 2011 Libiya
    • Blue: F/A-18E/F Super Hornet, F-15 improved (F-15E, F-15I, F-15SG, F-15SK…)
    • Grey: Eurofighter Typhoon, Rafale
    • Red: Su-35S
  • Fifth Generation:
    • Marketing term used by aircraft producers
    • Blue: Adanced Tactical Fighter (ATF) = F-22 Raptor, Joint Strike Fighter (JSF) = F-35 Lightening II
    • Grey: Grippen?
    • Red: PAK-FA Su-57, J-20
  • Sixth Generation – the current frontier
    • Blue: Next Generation Air Dominance (NGAD) program, UAS ?
    • Red: ?
    • Grey: Two seat, Twin tail “drone-herder”?

Abstraction and Aggregation in Wargame Modeling

[IPMS/USA Reviews]

“All models are wrong, some models are useful.” – George Box

Models, no matter what their subjects, must always be an imperfect copy of the original. The term “model” inherently has this connotation. If the subject is exact and precise, then it is a duplicate, a replica, a clone, or a copy, but not a “model.” The most common dimension to be compromised is generally size, or more literally the three spatial dimensions of length, width and height. A good example of this would be a scale model airplane, generally available in several ratios from the original, such as 1/144, 1/72 or 1/48 (which are interestingly all factors of 12 … there are also 1/100 for the more decimal-minded). These mean that the model airplane at 1/72 scale would be 72 times smaller … take the length, width and height measurements of the real item, and divide by 72 to get the model’s value.

If we take the real item’s weight and divide by 72, we would not expect our model to weight 72 times less! Not unless the same or similar materials would be used, certainly. Generally, the model has a different purpose than replicating the subject’s functionality. It is helping to model the subject’s qualities, or to mimic them in some useful way. In the case of the 1/72 plastic model airplane of the F-15J fighter, this might be replicating the sight of a real F-15J, to satisfy the desire of the youth to look at the F-15J and to imagine themselves taking flight. Or it might be for pilots at a flight school to mimic air combat with models instead of ha

The model aircraft is a simple physical object; once built, it does not change over time (unless you want to count dropping it and breaking it…). A real F-15J, however, is a dynamic physical object, which changes considerably over the course of its normal operation. It is loaded with fuel, ordnance, both of which have a huge effect on its weight, and thus its performance characteristics. Also, it may be occupied by different crew members, whose experience and skills may vary considerably. These qualities of the unit need to be taken into account, if the purpose of the model is to represent the aircraft. The classic example of this is a flight envelope model of an F-15A/C:

[Quora]

This flight envelope itself is a model, it represents the flight characteristics of the F-15 using two primary quantitative axes – altitude and speed (in numbers of mach), and also throttle setting. Perhaps the most interesting thing about this is the realization than an F-15 slows down as it descends. Are these particular qualities of an F-15 required to model air combat involving such and aircraft?

How to Apply This Modeling Process to a Wargame?

The purpose of the war game is to model or represent the possible outcome of a real combat situation, played forward in the model at whatever pace and scale the designer has intended.

As mentioned previously, my colleague and I are playing Asian Fleet, a war game that covers several types of naval combat, including those involving air units, surface units and submarine units. This was published in 2007, and updated in 2010. We’ve selected a scenario that has only air units on either side. The premise of this scenario is quite simple:

The Chinese air force, in trying to prevent the United States from intervening in a Taiwan invasion, will carry out an attack on the SDF as well as the US military base on Okinawa. Forces around Shanghai consisting of state-of-the-art fighter bombers and long-range attack aircraft have been placed for the invasion of Taiwan, and an attack on Okinawa would be carried out with a portion of these forces. [Asian Fleet Scenario Book]

Of course, this game is a model of reality. The infinite geospatial and temporal possibilities of space-time which is so familiar to us has been replaced by highly aggregated discreet buckets, such as turns that may last for a day, or eight hours. Latitude, longitude and altitude are replaced with a two-dimensional hexagonal “honey comb” surface. Hence, distance is no longer computed in miles or meters, but rather in “hexes”, each of which is about 50 nautical miles. Aircraft are effectively aloft, or on the ground, although a “high mission profile” will provide endurance benefits. Submarines are considered underwater, or may use “deep mode” attempting to hide from sonar searches.

Maneuver units are represented by “counters” or virtual chits to be moved about the map as play progresses. Their level of aggregation varies from large and powerful ships and subs represented individually, to smaller surface units and weaker subs grouped and represented by a single counter (a “flotilla”), to squadrons or regiments of aircraft represented by a single counter. Depending upon the nation and the military branch, this may be a few as 3-5 aircraft in a maritime patrol aircraft (MPA) detachment (“recon” in this game), to roughly 10-12 aircraft in a bomber unit, to 24 or even 72 aircraft in a fighter unit (“interceptor” in this game).

Enough Theory, What Happened?!

The Chinese Air Force mobilized their H6H bomber, escorted by large numbers of Flankers (J11 and Su-30MK2 fighters from the Shanghai area, and headed East towards Okinawa. The US Air Force F-15Cs supported by airborne warning and control system (AWACS) detected this inbound force and delayed engagement until their Japanese F-15J unit on combat air patrol (CAP) could support them, and then engaged the Chinese force about 50 miles from the AWACS orbits. In this game, air combat is broken down into two phases, long-range air to air (LRAA) combat (aka beyond visual range, BVR), and “regular” air combat, or within visual range (WVR) combat.

In BVR combat, only units marked as equipped with BVR capability may attack:

  • 2 x F-15C units have a factor of 32; scoring a hit in 5 out of 10 cases, or roughly 50%.
  • Su-30MK2 unit has a factor of 16; scoring a hit in 4 out of 10 cases, ~40%.

To these numbers a modifier of +2 exists when the attacker is supported by AWACS, so the odds to score a hit increase to roughly 70% for the F-15Cs … but in our example they miss, and the Chinese shot misses as well. Thus, the combat proceeds to WVR.

In WVR combat, each opposing side sums their aerial combat factors:

  • 2 x F-15C (32) + F-15J (13) = 45
  • Su-30MK2 (15) + J11 (13) + H6H (1) = 29

These two numbers are then expressed as a ratio, attacker-to-defender (45:29), and rounded down in favor of the defender (1:1), and then a ten-sided-die (d10) is rolled to consult the Air-to-Air Combat Results Table, on the “CAP/AWACS Interception” line. The die was rolled, and a result of “0/0r” was achieved, which basically says that neither side takes losses, but the defender is turned back from the mission (“r” being code for “return to base”). Given the +2 modifier for the AWACS, the worst outcome for the Allies would be a mutual return to base result (“0r/0r”). The best outcome would be inflicting two “steps” of damage, and sending the rest home (“0/2r”). A step of loss is about one half of an air unit, represented by flipping over the counter or chit, and operating with the combat factors at about half strength.

To sum this up, as the Allied commander, my conclusion was that the Americans were hung-over or asleep for this engagement.

I am encouraged by some similarities between this game and the fantastic detail that TDI has just posted about the DACM model, here and here. Thus, I plan to not only dissect this Asian Fleet game (VGAF), but also go a gap analysis between VGAF and DACM.

The Dupuy Air Campaign Model (DACM)

[The article below is reprinted from the April 1997 edition of The International TNDM Newsletter. A description of the TDI Air Model Historical Data Study can be found here.]

The Dupuy Air Campaign Model
by Col. Joseph A. Bulger, Jr., USAF, Ret.

The Dupuy Institute, as part of the DACM [Dupuy Air Campaign Model], created a draft model in a spreadsheet format to show how such a model would calculate attrition. Below are the actual printouts of the “interim methodology demonstration,” which shows the types of inputs, outputs, and equations used for the DACM. The spreadsheet was created by Col. Bulger, while many of the formulae were the work of Robert Shaw.

The Dupuy Institute Air Model Historical Data Study

British Air Ministry aerial combat diagram that sought to explain how the RAF had fought off the Luftwaffe. [World War II Today]

[The article below is reprinted from the April 1997 edition of The International TNDM Newsletter.]

Air Model Historical Data Study
by Col. Joseph A. Bulger, Jr., USAF, Ret

The Air Model Historical Study (AMHS) was designed to lead to the development of an air campaign model for use by the Air Command and Staff College (ACSC). This model, never completed, became known as the Dupuy Air Campaign Model (DACM). It was a team effort led by Trevor N. Dupuy and included the active participation of Lt. Col. Joseph Bulger, Gen. Nicholas Krawciw, Chris Lawrence, Dave Bongard, Robert Schmaltz, Robert Shaw, Dr. James Taylor, John Kettelle, Dr. George Daoust and Louis Zocchi, among others. After Dupuy’s death, I took over as the project manager.

At the first meeting of the team Dupuy assembled for the study, it became clear that this effort would be a serious challenge. In his own style, Dupuy was careful to provide essential guidance while, at the same time, cultivating a broad investigative approach to the unique demands of modeling for air combat. It would have been no surprise if the initial guidance established a focus on the analytical approach, level of aggregation, and overall philosophy of the QJM [Quantified Judgement Model] and TNDM [Tactical Numerical Deterministic Model]. It was clear that Trevor had no intention of steering the study into an air combat modeling methodology based directly on QJM/TNDM. To the contrary, he insisted on a rigorous derivation of the factors that would permit the final choice of model methodology.

At the time of Dupuy’s death in June 1995, the Air Model Historical Data Study had reached a point where a major decision was needed. The early months of the study had been devoted to developing a consensus among the TDI team members with respect to the factors that needed to be included in the model. The discussions tended to highlight three areas of particular interest—factors that had been included in models currently in use, the limitations of these models, and the need for new factors (and relationships) peculiar to the properties and dynamics of the air campaign. Team members formulated a family of relationships and factors, but the model architecture itself was not investigated beyond the surface considerations.

Despite substantial contributions from team members, including analytical demonstrations of selected factors and air combat relationships, no consensus had been achieved. On the contrary, there was a growing sense of need to abandon traditional modeling approaches in favor of a new application of the “Dupuy Method” based on a solid body of air combat data from WWII.

The Dupuy approach to modeling land combat relied heavily on the ratio of force strengths (largely determined by firepower as modified by other factors). After almost a year of investigations by the AMHDS team, it was beginning to appear that air combat differed in a fundamental way from ground combat. The essence of the difference is that in air combat, the outcome of the maneuver battle for platform position must be determined before the firepower relationships may be brought to bear on the battle outcome.

At the time of Dupuy’s death, it was apparent that if the study contract was to yield a meaningful product, an immediate choice of analysis thrust was required. Shortly prior to Dupuy’s death, I and other members of the TDI team recommended that we adopt the overall approach, level of aggregation, and analytical complexity that had characterized Dupuy’s models of land combat. We also agreed on the time-sequenced predominance of the maneuver phase of air combat. When I was asked to take the analytical lead for the contact in Dupuy’s absence, I was reasonably confident that there was overall agreement.

In view of the time available to prepare a deliverable product, it was decided to prepare a model using the air combat data we had been evaluating up to that point—June 1995. Fortunately, Robert Shaw had developed a set of preliminary analysis relationships that could be used in an initial assessment of the maneuver/firepower relationship. In view of the analytical, logistic, contractual, and time factors discussed, we decided to complete the contract effort based on the following analytical thrust:

  1. The contract deliverable would be based on the maneuver/firepower analysis approach as currently formulated in Robert Shaw’s performance equations;
  2. A spreadsheet formulation of outcomes for selected (Battle of Britain) engagements would be presented to the customer in August 1995;
  3. To the extent practical, a working model would be provided to the customer with suggestions for further development.

During the following six weeks, the demonstration model was constructed. The model (programmed for a Lotus 1-2-3 style spreadsheet formulation) was developed, mechanized, and demonstrated to ACSC in August 1995. The final report was delivered in September of 1995.

The working model demonstrated to ACSC in August 1995 suggests the following observations:

  • A substantial contribution to the understanding of air combat modeling has been achieved.
  • While relationships developed in the Dupuy Air Combat Model (DACM) are not fully mature, they are analytically significant.
  • The approach embodied in DACM derives its authenticity from the famous “Dupuy Method” thus ensuring its strong correlations with actual combat data.
  • Although demonstrated only for air combat in the Battle of Britain, the methodology is fully capable of incorporating modem technology contributions to sensor, command and control, and firepower performance.
  • The knowledge base, fundamental performance relationships, and methodology contributions embodied in DACM are worthy of further exploration. They await only the expression of interest and a relatively modest investment to extend the analysis methodology into modem air combat and the engagements anticipated for the 21st Century.

One final observation seems appropriate. The DACM demonstration provided to ACSC in August 1995 should not be dismissed as a perhaps interesting, but largely simplistic approach to air combat modeling. It is a significant contribution to the understanding of air combat relationships that will prevail in the 21st Century. The Dupuy Institute is convinced that further development of DACM makes eminent good sense. An exploitation of the maneuver and firepower relationships already demonstrated in DACM will provide a valid basis for modeling air combat with modern technology sensors, control mechanisms, and weapons. It is appropriate to include the Dupuy name in the title of this latest in a series of distinguished combat models. Trevor would be pleased.

Assessing The Assessments Of The Military Balance In The China Seas

“If we maintain our faith in God, love of freedom, and superior global airpower, the future [of the US] looks good.” — U.S. Air Force General Curtis E. LeMay (Commander, U.S. Strategic Command, 1948-1957)

Curtis LeMay was involved in the formation of RAND Corporation after World War II. RAND created several models to measure the dynamics of the US-China military balance over time. Since 1996, this has been computed for two scenarios, differing by range from mainland China: one over Taiwan and the other over the Spratly Islands. The results of the model results for selected years can be seen in the graphic below.

The capabilities listed in the RAND study are interesting, notable in that the air superiority category, rough parity exists as of 2017. Also, the ability to attack air bases has given an advantage to the Chinese forces.

Investigating the methodology used does not yield any precise quantitative modeling examples, as would be expected in a rigorous academic effort, although there is some mention of statistics, simulation and historical examples.

The analysis presented here necessarily simplifies a great number of conflict characteristics. The emphasis throughout is on developing and assessing metrics in each area that provide a sense of the level of difficulty faced by each side in achieving its objectives. Apart from practical limitations, selectivity is driven largely by the desire to make the work transparent and replicable. Moreover, given the complexities and uncertainties in modern warfare, one could make the case that it is better to capture a handful of important dynamics than to present the illusion of comprehensiveness and precision. All that said, the analysis is grounded in recognized conclusions from a variety of historical sources on modern warfare, from the air war over Korea and Vietnam to the naval conflict in the Falklands and SAM hunting in Kosovo and Iraq. [Emphasis added].

We coded most of the scorecards (nine out of ten) using a five-color stoplight scheme to denote major or minor U.S. advantage, a competitive situation, or major or minor Chinese advantage. Advantage, in this case, means that one side is able to achieve its primary objectives in an operationally relevant time frame while the other side would have trouble in doing so. [Footnote] For example, even if the U.S. military could clear the skies of Chinese escort fighters with minimal friendly losses, the air superiority scorecard could be coded as “Chinese advantage” if the United States cannot prevail while the invasion hangs in the balance. If U.S. forces cannot move on to focus on destroying attacking strike and bomber aircraft, they cannot contribute to the larger mission of protecting Taiwan.

All of the dynamic modeling methodology (which involved a mix of statistical analysis, Monte Carlo simulation, and modified Lanchester equations) is publicly available and widely used by specialists at U.S. and foreign civilian and military universities.” [Emphasis added].

As TDI has contended before, the problem with using Lanchester’s equations is that, despite numerous efforts, no one has been able to demonstrate that they accurately represent real-world combat. So, even with statistics and simulation, how good are the results if they have relied on factors or force ratios with no relation to actual combat?

What about new capabilities?

As previously posted, the Kratos Mako Unmanned Combat Aerial Vehicle (UCAV), marketed as the “unmanned wingman,” has recently been cleared for export by the U.S. State Department. This vehicle is specifically oriented towards air-to-air combat, is stated to have unparalleled maneuverability, as it need not abide by limits imposed by human physiology. The Mako “offers fighter-like performance and is designed to function as a wingman to manned aircraft, as a force multiplier in contested airspace, or to be deployed independently or in groups of UASs. It is capable of carrying both weapons and sensor systems.” In addition, the Mako has the capability to be launched independently of a runway, as illustrated below. The price for these vehicles is three million each, dropping to two million each for an order of at least 100 units. Assuming a cost of $95 million for an F-35A, we can imagine a hypothetical combat scenario pitting two F-35As up against 100 of these Mako UCAVs in a drone swarm; a great example of the famous phrase, quantity has a quality all its own.

A battery of Kratos Aerial Target drone ready for take off. One of the advantages of the low-cost Kratos drones are their ability to get into the air quickly. [Kratos Defense]

How to evaluate the effects of these possible UCAV drone swarms?

In building up towards the analysis of all of these capabilities in the full theater, campaign level conflict, some supplemental wargaming may be useful. One game that takes a good shot at modeling these dynamics is Asian Fleet.  This is a part of the venerable Fleet Series, published by Victory Games, designed by Joseph Balkoski to model modern (that is Cold War) naval combat. This game system has been extended in recent years, originally by Command Magazine Japan, and then later by Technical Term Gaming Company.

Screenshot of Asian Fleet module by Bryan Taylor [vassalengine.org]

More to follow on how this game transpires!