RAND described the combat system from their hex boardgame as such:
The general game design was similar to that of traditional board wargames, with a hex grid governing movement superimposed on a map. Tactical Pilotage Charts (1:500,000 scale) were used, overlaid with 10-km hexes, as seen in Figure A.1. Land forces were represented at the battalion level and air units as squadrons; movement and combat were governed and adjudicated using rules and combat-result tables that incorporated both traditional gaming principles (e.g., Lanchester exchange rates) and the results of offline modeling….”
Now this catches my attention. Switching from a “series of tubes” to a hexagon boardgame brings back memories, but it is understandable. On the other hand, it is pretty widely known that no one has been able to make Lanchester equations work when tested to historical ground combat. There have been multiple efforts conducted to test this, mostly using the Ardennes and Kursk databases that we developed. In particular, Jerome Braken published his results in Modeling Warfare and Dr. Thomas Lucas out at Naval Post-Graduate School has conducted multiple tests to try to do the same thing. They all point to the same conclusion, which is that Lanchester equations do not really work for ground combat. They might work for air, but it is hard to tell from the RAND write-up whether they restricted the use of “Lanchester exchange rates” to only air combat. I could make the point by referencing many of these studies but this would be a long post. The issue is briefly discussed in Chapter Eighteen of my upcoming book War by Numbers and is discussed in depth in the TDI report “Casualty Estimation Methodologies Study.” Instead I will leave it to Frederick Lanchester himself, writing in 1914, to summarize the problem:
We have already seen that the N-square law applies broadly, if imperfectly, to military operations. On land, however, there sometimes exist special conditions and a multitude of factors extraneous to the hypothesis, whereby its operations may be suspended or masked.