Category Lessons of History

Measuring the Effects of Combat in Cities, Phase III – part 2

U.S. Army troops in Hue, South Vietnam monitor the streets below during the Tet Offensive, 1968. [Bettmann/CORBIS]

Another part of our Phase III effort was to look at post-World War II cases. This is, by its nature, invariably one-sided data. Maybe at some point we will get the Chinese, North Koreans, Vietnamese, Syrians, etc. to open up their archives to us researchers, but, except for possibly Vietnam, I don’t think that is going to happen any time in the near future. So, we ended up building our post-World War II cases primarily from U.S. data.

We added 10 engagements from the Inchon/Seoul operation in 1950. For Vietnam we added  65 division-level urban engagements from the Tet Offensive in 1968 and 57 division-level non-urban engagements. We also added 56 battalion-level urban engagements from the Tet Offensive (all in Hue). We had 14 division-level urban engagements and 65 division-level non-urban engagements from various contingencies and conventional operations from 1944 to 2003. This included ELAS Insurgency, Arab-Isreali Wars, Panama, Mogadishu, the 1991 Gulf War and Baghdad in 2003. We also added 9 battalion-level urban cases, mostly from Beirut 1982-1984.

To add it all up this was:

                                                 Urban       Non-urban

Phase I (ETO)                              46              91

Phase II (Kharkov/Kursk)             51              65

Phase III (Manila/PTO)                53              41

Post-WWII – Division-level           89            123

Post-WWII – Battalion-level          65               0

                                                   ——-         ——

Total cases                                 304           319

This is a lot of cases for comparisons.

Just to show how they match up (from page 28 of the report):

Attackers in Division-Level Engagements:

Urban

PTO Kor Tet Oth ETO EF (Ger Atk) EF (Sov Atk)
Avg Str/day 12,099 28,304 6,294 10,903 34,601 17,080 17,001
Avg Cas 78 30 94 254 178 86 371
Avg Cas/day 78 30 39 59 169 86 371
Avg % Loss/day 0.63 0.71 0.78 0.56 0.50 0.49 1.95
Wgt % Loss/day 0.65 0.71 0.62 0.54 0.49 0.50 2.18

 

Non-urban

PTO Tet Oth ETO EF (Ger Atk) EF (Sov Atk)
Avg Str/day 17,445 13,232 18,991 21,060 27,083 27,044
Avg Cas 663 44 377 469 276 761
Avg Cas/day 221 22 191 237 206 653
Avg % Loss/day 0.83 0.19 1.56 1.09 1.00 2.39
Wgt % Loss/day 1.27 0.17 1.01 1.13 0.76 2.41

I will pick up more on the Phase III effort in a subsequent posting (a part 3 to this series). These charts are also on page 238 of War by Numbers.

 

P.S. The blog the image was taken from (it is a collection of pictures taken from the fighting in Hue): https://vulep-photo.blogspot.com/2013/01/hue-1968-tet-mau-than_3410.html

 

Measuring the Effects of Combat in Cities, Phase III – part 1

Now comes Phase III of this effort. The Phase I report was dated 11 January 2002 and covered the European Theater of Operations (ETO). The Phase II report [Part I and Part II] was dated 30 June 2003 and covered the Eastern Front (the three battles of Kharkov). Phase III was completed in 31 July 2004 and covered the Battle of Manila in the Pacific Theater, post-WWII engagements, and battalion-level engagements. It was a pretty far ranging effort.

In the case of Manila, this was the first time that we based our analysis using only one-side data (U.S. only). In this case, the Japanese tended to fight to almost the last man. We occupied the field of combat after the battle and picked up their surviving unit records. Among the Japanese, almost all died and only a few were captured by the U.S. So, we had fairly good data from the U.S. intelligence files. Regardless, the U.S. battle reports for Japanese data was the best data available. This allowed us to work with one-sided data. The engagements were based upon the daily operations of the U.S. Army’s 37th Infantry Division and the 1st Cavalry Division.

Conclusions (from pages 44-45):

The overall conclusions derived from the data analysis in Phase I were as follows, while those from this Phase III analysis are in bold italics.

  1. Urban combat did not significantly influence the Mission Accomplishment (Outcome) of the engagements. Phase III Conclusion: This conclusion was further supported.
  2. Urban combat may have influenced the casualty rate. If so, it appears that it resulted in a reduction of the attacker casualty rate and a more favorable casualty exchange ratio compared to non-urban warfare. Whether or not these differences are caused by the data selection or by the terrain differences is difficult to say, but regardless, there appears to be no basis to the claim that urban combat is significantly more intense with regards to casualties than is non-urban warfare. Phase III Conclusion: This conclusion was further supported. If urban combat influenced the casualty rate, it appears that it resulted in a reduction of the attacker casualty rate and a more favorable casualty exchange ratio compared to non-urban warfare. There still appears to be no basis to the claim that urban combat is significantly more intense with regards to casualties than is non-urban warfare.
  3. The average advance rate in urban combat should be one-half to one-third that of non-urban combat. Phase III Conclusion: There was strong evidence of a reduction in the advance rates in urban terrain in the PTO data. However, given that this was a single extreme case, then TDI still stands by its original conclusion that the average advance rate in urban combat should be about one-half to one-third that of non-urban combat/
  4. Overall, there is little evidence that the presence of urban terrain results in a higher linear density of troops, although the data does seem to trend in that direction. Phase III Conclusion: The PTO data shows the highest densities found in the data sets for all three phases of this study. However, it does not appear that the urban density in the PTO was significantly higher than the non-urban density. So it remains difficult to tell whether or not the higher density was a result of the urban terrain or was simply a consequence of the doctrine adopted to meet the requirements found in the Pacific Theater.
  5. Overall, it appears that the loss of armor in urban terrain is the same as or less than that found in non-urban terrain, and in some cases is significantly lower. Phase III Conclusion: This conclusion was further supported.
  6. Urban combat did not significantly influence the Force Ratio required to achieve success or effectively conduct combat operations. Phase III Conclusion: This conclusion was further supported.
  7. Nothing could be determined from an analysis of the data regarding the Duration of Combat (Time) in urban versus non-urban terrain. Phase III Conclusion: Nothing could be determined from an analysis of the data regarding the Duration of Combat (Time) in urban versus non-urban terrain.

So, in Phase I we compared 46 urban and conurban engagements in the ETO to 91 non-urban engagements. In Phase II, we compared 51 urban and conurban engagements in an around Kharkov to 49 non-urban Kursk engagements. On Phase III, from Manila we compared 53 urban and conurban engagements to 41 non-urban engagements mostly from Iwo Jima, Okinawa and Manila. The next blog post on urban warfare will discuss our post-WWII data.

P.S. The picture is an aerial view of the destroyed walled city of Intramuros taken on May 1945

Measuring the Effects of Combat in Cities, Phase II – part 2

There was actually supposed to be a part 2 to this Phase II contract, which was analysis of urban combat at the army-level based upon 50 operations, of which a half-dozen would include significant urban terrain. This effort was not funded.

On the other hand, the quantitative analysis of battles of Kharkov only took up the first 41 pages of the report. A significant part of the rest of the report was a more detailed analysis and case study of the three fights over Kharkov in February, March and August of 1943. Kharkov was a large city, according to the January 1939 census, it has a population of 1,344,200, although a Soviet-era encyclopedia gives the pre-war population as 840,000. We never were able to figure out why there was a discrepancy. The whole area was populated with many villages. The January 1939 gives Kharkov Oblast (region) a population of 1,209,496. This is in addition to the city, so the region had a total population of 2,552,686. Soviet-era sources state that when the city was liberated in August 1943, the remaining population was only 190,000. Kharkov was a much larger city than any of the others ones covered in Phase I effort (except for Paris, but the liberation of that city was hardly a major urban battle).

The report then does a day-by-day review of the urban fighting in Kharkov. Doing a book or two on the battles of Kharkov is on my short list of books to write, as I have already done a lot of the research. We do have daily logistical expenditures of the SS Panzer Corps for February and March (tons of ammo fired, gasoline used and diesel used). In March when the SS Panzer Corps re-took Kharkov, we noted that the daily average for the four days of urban combat from 12 to 15 March was 97.25 tons of ammunition, 92 cubic meters of gasoline and 10 cubic meters of diesel. For the previous five days (7-11 March) the daily average was 93.20 tons of ammunition, 145 cubic meters of gasoline and 9 cubic meters of diesel. Thus it does not produce a lot of support for the idea that–as has sometimes been expressed (for example in RAND’s earlier reports on the subject)–that ammunition and other supplies will be consumed at a higher rate in urban operations.

We do observe from the three battles of Kharkov that (page 95):

There is no question that the most important lesson found in the three battles of Kharkov is that one should just bypass cities rather than attack them. The Phase I study also points out that the attacker is usually aware that faster progress can be made outside the urban terrain, and that the tendency is to weight one or both flanks and not bother to attack the city until it is enveloped. This is indeed what happened in two of the three cases at Kharkov and was also the order given by the Fourth Panzer Army that was violated by the SS Panzer Corps in March.

One must also note that since this study began the United States invaded Iraq and conducted operations in some major urban areas, albeit against somewhat desultory and ineffective opposition. In the southern part of Iraq the two major port cities Umm Qasar and Basra were first enveloped before any forces were sent in to clear them. In the case of Baghdad, it could have been enveloped if sufficient forces were available. As it was, it was not seriously defended. The recent operations in Iraq again confirmed that observations made in the two phases of this study.

P.S. The picture is of Kharkov in 1942, when it was under German occupation.

Measuring the Effects of Combat in Cities, Phase II – part 1

Our first urban warfare report that we did had a big impact. It clearly showed that the intensity of urban warfare was not what some of the “experts” out there were claiming. In particular, it called into question some of the claims being made by RAND. But, the report was based upon Aachen, Cherbourg, and a collection of mop-up operations along the Channel Coast. Although this was a good starting point because of the ease of research and availability of data, we did not feel that this was a fully representative collection of cases. We also did not feel that it was based upon enough cases, although we had already assembled more cases than most “experts” were using. We therefore convinced CAA (Center for Army Analysis) to fund a similar effort for the Eastern Front in World War II.

For this second phase, we again assembled a collection of Eastern Front urban warfare engagements in our DLEDB (Division-level Engagement Data Base) and compared it to Eastern Front non-urban engagements. We had, of course, a considerable collection of non-urban engagements already assembled from the Battle of Kursk in July 1943. We therefore needed a good urban engagement nearby. Kharkov is the nearest major city to where these non-urban engagements occurred and it was fought over three times in 1943. It was taken by the Red Army in February, it was retaken by the German Army in March, and it was taken again by the Red Army in August. Many of the units involved were the same units involved in the Battle of Kursk. This was a good close match. It has the additional advantage that both sides were at times on the offense.

Furthermore, Kharkov was a big city. At the time it was the fourth biggest city in the Soviet Union, being bigger than Stalingrad (as measured by pre-war population). A picture of its Red Square in March 1943, after the Germans retook it, is above.

We did have good German records for 1943 and we were able to get access to Soviet division-level records from February, March and August from the Soviet military archives in Podolsk. Therefore, we were able to assembled all the engagements based upon the unit records of both sides. No secondary sources were used, and those that were available were incomplete, usually one-sided, sometimes biased and often riddled with factual errors.

So, we ended up with 51 urban and conurban engagements from the fighting around Kharkov, along with 65 non-urban engagements from Kursk (we have more now).

The Phase II effort was completed on 30 June 2003. The conclusions of Phase II (pages 40-41) were similar to Phase I:

.Phase II Conclusions:

  1. Mission Accomplishment: This [Phase I] conclusion was further supported. The data does show a tendency for urban engagements not to generate penetrations.
  2. Casualty Rates: This [Phase I] conclusion was further supported. If urban combat influenced the casualty rate, it appears that it resulted in a reduction of the attacker casualty rate and a more favorable casualty exchange ratio compared to nonurban warfare. There still appears to be no basis to the claim that urban combat is significantly more intense with regards to casualties than is nonurban warfare.
  3. Advance Rates: There is no strong evidence of a reduction in the advance rates in urban terrain in the Eastern Front data. TDI still stands by its original conclusion that the average advance rate in urban combat should be one-half to one-third that of nonurban combat.
  4. Linear Density: Again, there is little evidence that the presence of urban terrain results in a higher linear density of troops, but unlike the ETO data, the data did not show a tendency to trend in that direction.
  5. Armor Losses: This conclusion was further supported (Phase I conclusion was: Overall, it appears that the loss of armor in urban terrain is the same as or less than that found in nonurban terrain, and in some cases is significantly lower.)
  6. Force Ratios: The conclusion was further supported (Phase I conclusion was: Urban combat did not significantly influence the Force Ratio required to achieve success or effectively conduct combat operations).
  7. Duration of Combat: Nothing could be determined from an analysis of the data regarding the Duration of Combat (Time) in urban versus nonurban terrain.

There is a part 2 to this effort that I will pick up in a later post.

The (Missing) Urban Warfare Study

[This post was originally published on 13 December 2017]

And then…..we discovered the existence of a significant missing study that we wanted to see.

Around 2000, the Center for Army Analysis (CAA) contracted The Dupuy Institute to conduct an analysis of how to represent urban warfare in combat models. This was the first work we had ever done on urban warfare, so…….we first started our literature search. While there was a lot of impressionistic stuff gathered from reading about Stalingrad and watching field exercises, there was little hard data or analysis. Simply no one had ever done any analysis of the nature of urban warfare.

But, on the board of directors of The Dupuy Institute was a grand old gentleman called John Kettelle. He had previously been the president of Ketron, an operations research company that he had founded. Kettelle had been around the business for a while, having been an office mate of Kimball, of Morse and Kimbell fame (the people who wrote the original U.S. Operations Research “textbook” in 1951: Methods of Operations Research). He is here: https://www.adventfuneral.com/services/john-dunster-kettelle-jr.htm?wpmp_switcher=mobile

John had mentioned several times a massive study on urban warfare that he had done  for the U.S. Army in the 1970s. He had mentioned details of it, including that it was worked on by his staff over the course of several years, consisted of several volumes, looked into operations in Stalingrad, was pretty extensive and exhaustive, and had a civil disturbance component to it that he claimed was there at the request of the Nixon White House. John Kettelle sold off his company Ketron in the 1990s and was now semi-retired.

So, I asked John Kettelle where his study was. He said he did not know. He called over to the surviving elements of Ketron and they did not have a copy. Apparently significant parts of the study were classified. In our review of the urban warfare literature around 2000 we found no mention of the study or indications that anyone had seen or drawn any references from it.

This was probably the first extensive study ever done on urban warfare. It employed at least a half-dozen people for multiple years. Clearly the U.S. Army spent several million of our hard earned tax dollars on it…..yet is was not being used and could not be found. It was not listed in DTIC, NTIS, on the web, nor was it in Ketron’s files, and John Kettelle did not have a copy of it. It was lost !!!

So, we proceeded with our urban warfare studies independent of past research and ended up doing three reports on the subject. Theses studies are discussed in two chapters of my book War by Numbers.

All three studies are listed in our report list: http://www.dupuyinstitute.org/tdipub3.htm

The first one is available on line at:  http://www.dupuyinstitute.org/pdf/urbanwar.pdf

As the Ketron urban warfare study was classified, there were probably copies of it in classified U.S. Army command files in the 1970s. If these files have been properly retired then these classified files may exist in the archives. At some point, they may be declassified. At some point the study may be re-discovered. But……the U.S. Army after spending millions for this study, preceded to obtain no benefit from the study in the late 1990s, when a lot of people re-opened the issue of urban warfare. This would have certainly been a useful study, especially as much of what the Army, RAND and others were discussing at the time was not based upon hard data and was often dead wrong.

This may be a case of the U.S. Army having to re-invent the wheel because it has not done a good job of protecting and disseminating its studies and analysis. This seems to particularly be a problem with studies that were done by contractors that have gone out of business. Keep in mind, we were doing our urban warfare work for the Center for Army Analysis. As a minimum, they should have had a copy of it.

Measuring The Effects Of Combat In Cities, Phase I

“Catalina Kid,” a M4 medium tank of Company C, 745th Tank Battalion, U.S. Army, drives through the entrance of the Aachen-Rothe Erde railroad station during the fighting around the city viaduct on Oct. 20, 1944. [Courtesy of First Division Museum/Daily Herald]

In 2002, TDI submitted a report to the U.S. Army Center for Army Analysis (CAA) on the first phase of a study examining the effects of combat in cities, or what was then called “military operations on urbanized terrain,” or MOUT. This first phase of a series of studies on urban warfare focused on the impact of urban terrain on division-level engagements and army-level operations, based on data drawn from TDI’s DuWar database suite.

This included engagements in France during 1944 including the Channel and Brittany port cities of Brest, Boulogne, Le Havre, Calais, and Cherbourg, as well as Paris, and the extended series of battles in and around Aachen in 1944. These were then compared to data on fighting in contrasting non-urban terrain in Western Europe in 1944-45.

The conclusions of Phase I of that study (pp. 85-86) were as follows:

The Effect of Urban Terrain on Outcome

The data appears to support a null hypothesis, that is, that the urban terrain had no significantly measurable influence on the outcome of battle.

The Effect of Urban Terrain on Casualties

Overall, any way the data is sectioned, the attacker casualties in the urban engagements are less than in the non-urban engagements and the casualty exchange ratio favors the attacker as well. Because of the selection of the data, there is some question whether these observations can be extended beyond this data, but it does not provide much support to the notion that urban combat is a more intense environment than non-urban combat.

The Effect of Urban Terrain on Advance Rates

It would appear that one of the primary effects of urban terrain is that it slows opposed advance rates. One can conclude that the average advance rate in urban combat should be one-half to one-third that of non-urban combat.

The Effect of Urban Terrain on Force Density

Overall, there is little evidence that combat operations in urban terrain result in a higher linear density of troops, although the data does seem to trend in that direction.

The Effect of Urban Terrain on Armor

Overall, it appears that armor losses in urban terrain are the same as, or lower than armor losses in non-urban terrain. And in some cases it appears that armor losses are significantly lower in urban than non-urban terrain.

The Effect of Urban Terrain on Force Ratios

Urban terrain did not significantly influence the force ratio required to achieve success or effectively conduct combat operations.

The Effect of Urban Terrain on Stress in Combat

Overall, it appears that urban terrain was no more stressful a combat environment during actual combat operations than was non-urban terrain.

The Effect of Urban Terrain on Logistics

Overall, the evidence appears to be that the expenditure of artillery ammunition in urban operations was not greater than that in non-urban operations. In the two cases where exact comparisons could be made, the average expenditure rates were about one-third to one-quarter the average expenditure rates expected for an attack posture in the European Theater of Operations as a whole.

The evidence regarding the expenditure of other types of ammunition is less conclusive, but again does not appear to be significantly greater than the expenditures in non-urban terrain. Expenditures of specialized ordnance may have been higher, but the total weight expended was a minor fraction of that for all of the ammunition expended.

There is no evidence that the expenditure of other consumable items (rations, water or POL) was significantly different in urban as opposed to non-urban combat.

The Effect of Urban Combat on Time Requirements

It was impossible to draw significant conclusions from the data set as a whole. However, in the five significant urban operations that were carefully studied, the maximum length of time required to secure the urban area was twelve days in the case of Aachen, followed by six days in the case of Brest. But the other operations all required little more than a day to complete (Cherbourg, Boulogne and Calais).

However, since it was found that advance rates in urban combat were significantly reduced, then it is obvious that these two effects (advance rates and time) are interrelated. It does appear that the primary impact of urban combat is to slow the tempo of operations.

This in turn leads to a hypothetical construct, where the reduced tempo of urban operations (reduced casualties, reduced opposed advance rates and increased time) compared to non-urban operations, results in two possible scenarios.

The first is if the urban area is bounded by non-urban terrain. In this case the urban area will tend to be enveloped during combat, since the pace of battle in the non-urban terrain is quicker. Thus, the urban battle becomes more a mopping-up operation, as it historically has usually been, rather than a full-fledged battle.

The alternate scenario is that created by an urban area that cannot be enveloped and must therefore be directly attacked. This may be caused by geography, as in a city on an island or peninsula, by operational requirements, as in the case of Cherbourg, Brest and the Channel Ports, or by political requirements, as in the case of Stalingrad, Suez City and Grozny.

Of course these last three cases are also those usually included as examples of combat in urban terrain that resulted in high casualty rates. However, all three of them had significant political requirements that influenced the nature, tempo and even the simple necessity of conducting the operation. And, in the case of Stalingrad and Suez City, significant geographical limitations effected the operations as well. These may well be better used to quantify the impact of political agendas on casualties, rather than to quantify the effects of urban terrain on casualties.

The effects of urban terrain at the operational level, and the effect of urban terrain on the tempo of operations, will be further addressed in Phase II of this study.

More on the QJM/TNDM Italian Battles

Troops of the U.S. 36th Infantry Division advance inland on Red Beach, Salerno, Italy, 1943. [ibiblio/U.S. Center for Military History]

[The article below is reprinted from December 1998 edition of The International TNDM Newsletter.]

More on the QJM/TNDM Italian Battles
by Richard C. Anderson, Jr.

In regard to Niklas Zetterling’s article and Christopher Lawrence’s response (Newsletter Volume 1, Number 6) [and Christopher Lawrence’s 2018 addendum] I would like to add a few observations of my own. Recently I have had occasion to revisit the Allied and German records for Italy in general and for the Battle of Salerno in particular. What I found is relevant in both an analytical and an historical sense.

The Salerno Order of Battle

The first and most evident observation that I was able to make of the Allied and German Order of Battle for the Salerno engagements was that it was incorrect. The following observations all relate to the table found on page 25 of Volume 1, Number 6.

The divisional totals are misleading. The U.S. had one infantry division (the 36th) and two-thirds of a second (the 45th, minus the 180th RCT [Regimental Combat Team] and one battalion of the 157th Infantry) available during the major stages of the battle (9-15 September 1943). The 82nd Airborne Division was represented solely by elements of two parachute infantry regiments that were dropped as emergency reinforcements on 13-14 September. The British 7th Armored Division did not begin to arrive until 15-16 September and was not fully closed in the beachhead until 18-19 September.

The German situation was more complicated. Only a single panzer division, the 16th, under the command of the LXXVI Panzer Corps was present on 9 September. On 10 September elements of the Hermann Goring Parachute Panzer Division, with elements of the 15th Panzergrenadier Division under tactical command, began arriving from the vicinity of Naples. Major elements of the Herman Goring Division (with its subordinated elements of the 15th Panzergrenadier Division) were in place and had relieved elements of the 16th Panzer Division opposing the British beaches by 11 September. At the same time the 29th Panzergrenandier Division began arriving from Calabria and took up positions opposite the U.S. 36th Divisions in and south of Altavilla, again relieving elements of the 16th Panzer Division. By 11-12 September the German forces in the northern sector of the beachhead were under the command of the XIV Panzer Corps (Herman Goring Division (-), elements of the 15th Panzergrenadier Division and elements of the 3rd Panzergrenadier Division), while the LXXVI Panzer Corps commanded the 16th Panzer Division, 29th Panzergrenadier Division, and elements of the 26th Panzer Division. Unfortunately for the Germans the 16th Panzer Division’s zone was split by the boundary between the XIV and LXXVI Corps, both of whom appear to have had operational control over different elements of the division. Needless to say, the German command and control problems in this action were tremendous.[1]

The artillery totals given in the table are almost inexplicable. The numbers of SP [self-propelled] 75mm howitzers is a bit fuzzy, inasmuch as this was a non-standardized weapon on a half-track chassis. It was allocated to the infantry regimental cannon company (6 tubes) and was also issued to tank and tank destroyer battalions as a stopgap until purpose-designed systems could be brought into production. The 105mm SP was also present on a half-track chassis in the regimental cannon company (2 tubes) and on a full-track chassis in the armored field artillery battalion (18 tubes). The towed 105mm artillery was present in the five field artillery battalions present of the 36th and 45th divisions and in a single non-divisional battalion assigned to the VI Corps. The 155mm howitzers were only present in the two divisional field artillery battalions, the general support artillery assigned to the VI Corps, the 36th Field Artillery Regiment, did not arrive until 16 September. No 155mm gun battalions landed in Italy until October 1943. The U.S. artillery figures should approximately be as follows:

75mm Howitzer (SP)

2 per infantry battalion

28

6 per tank battalion

12

Total

40
105mm Howitzer (SP)

2 per infantry regiment

10

1 armored FA battalion[2]

18

5 divisional FA battalions

60

1 non-divisional FA battalion

12

Total

100
155mm Howitzer

2 divisional FA battalions

24
3″ Tank Destroyer

3 battalions

108

Thus, the U.S. artillery strength is approximately 272 versus 525 as given in the chart.

The British artillery figures are also suspect. Each of the British divisions present, the 46th and 56th, had three regiments (battalions in U.S. parlance) of 25-pounder gun-howitzers for a total of 72 per division. There is no evidence of the presence of the British 3-inch howitzer, except possibly on a tank chassis in the support tank role attached to the tank troop headquarters of the armor regiment (battalion) attached to the X Corps (possibly 8 tubes). The X Corps had a single medium regiment (battalion) attached with either 4.5 inch guns or 5.5 inch gun-howitzers or a mixture of the two (16 tubes). The British did not have any 7.2 inch howitzers or 155mm guns at Salerno. I do not know where the figure for British 75mm howitzers is from, although it is possible that some may have been present with the corps armored car regiment.

Thus the British artillery strength is approximately 168 versus 321 as given in the chart.

The German artillery types are highly suspect. As Niklas Zetterling deduced, there was no German corps or army artillery present at Salemo. Neither the XIV or LXXVI Corps had Heeres (army) artillery attached. The two battalions of the 7lst Nebelwerfer regiment and one battery of 170mm guns (previously attached to the 15th Panzergrenadier Division) were all out of action, refurbishing and replenishing equipment in the vicinity of Naples. However, U.S. intelligence sources located 42 Italian coastal gun positions, including three 149mm (not 132mm) railway guns defending the beaches. These positions were taken over by German personnel on the night before the invasion. That they fired at all in the circumstances is a comment on the professionalism of the German Army. The remaining German artillery available was with the divisional elements that arrived to defend against the invasion forces. The following artillery strengths are known for the German forces at Salerno:

16th Panzer Division (as of 3 September):

14 75mm infantry support howitzers
11 150mm SP infantry support howitzers
10 105mm howitzers
8 105mm SP howitzers
4 105mm guns
8 150mm howitzers
5 150mm SP howitzers
5 88mm AA guns

26th Panzer Division (as of 12 September):

15 75mm infantry support howitzers
12 150mm infantry support howitzers
6 105mm SP howitzers
12 105mm howitzers
10 150mm SP howitzers
4 150mm howitzers

Herman Goring Parachute Panzer Division (as of 13 September):

6-8 75mm infantry support howitzers
8 150mm infantry support howitzers
24 105mm howitzers
12 105mm SP howitzers
4 105mm guns
8 150mrn howitzers
6 150mm SP howitzers
6 150mm multiple rocket launchers
12 88mm AA guns

29th Panzergrenadier Division

106 artillery pieces (types unknown)

15th Panzergrenadier Division (elements):

10-12 105mm howitzers

3d Panzergrenadier Division

6 150mm infantry support howitzers

Non-divisional:

501st Army Flak Battalion (probably 20mm and 37mm AA only)
I/49th Flak Battalion (probably 8 88mm AA guns)

Thus, German artillery strength is about 342 tubes versus 394 as given in the chart.[3]

Armor strengths are equally suspect for both the Allied and German forces. It should be noted however, that the original QJM database considered wheeled armored cars to be the equivalent of a light tank.

Only two U.S. armor battalions were assigned to the initial invasion force, with a total of 108 medium and 34 light tanks. The British X Corps had a single armor regiment (battalion) assigned with approximately 67 medium and 10 light tanks. Thus, the Allies had some 175 medium tanks versus 488 as given in the chart and 44 light tanks versus 236 (including an unknown number of armored cars) as given in the chart.

German armor strength was as follows (operational/in repair as of the date given):

16th Panzer Division (8 September):

7/0 Panzer III flamethrower tanks
12/0 Panzer IV short
86/6 Panzer IV long
37/3 assault guns

29th Panzergrenadier Division (1 September):

32/5 assault guns
17/4 SP antitank
3/0 Panzer III

26th Panzer Division (5 September):

11/? assault guns
10/? Panzer III

Herman Goering Parachute Panzer Division (7 September):

5/? Panzer IV short
11/? Panzer IV long
5/? Panzer III long
1/? Panzer III 75mm
21/? assault guns
3/? SP antitank

15th Panzergrenadier Division (8 September):

6/? Panzer IV long
18/? assault guns

Total 285/18 medium tanks, SP anti-tank, and assault guns. This number actually agrees very well with the 290 medium tanks given in the chart. I have not looked closely at the number of German armored cars but suspect that it is fairly close to that given in the charts.

In general it appears that the original QJM Database got the numbers of major items of equipment right for the Germans, even if it flubbed on the details. On the other hand, the numbers and details are highly suspect for the Allied major items of equipment. Just as a first order “guestimate” I would say that this probably reduces the German CEV to some extent; however, missing from the formula is the Allied naval gunfire support which, although negligible in impact in the initial stages of the battle, had a strong influence on the later stages of the battle.

Hopefully, with a little more research and time, we will be able to go back and revalidate these engagements. In the meantime I hope that this has clarified some of the questions raised about the Italian QJM Database.

NOTES

[1] Exacerbating the German command and control problems was the fact that the Tenth Army, which was in overall command of the XIV Panzer Corps and LXXVI Panzer Corps, had only been in existence for about six weeks. The army’s signal regiment was only partly organized and its quartermaster services were almost nonexistent.

[2] Arrived 13 September, 1 battery in action 13-15 September.

[3] However, the number given for the 29th Panzergrenadier Division appears to be suspiciously high and is not well defined. Hopefully further research may clarify the status of this division.

Dupuy’s Verities: The Power Of Defense

Leonidas at Thermopylae, by Jacques-Louis David, 1814. [Wikimedia]

The second of Trevor Dupuy’s Timeless Verities of Combat is:

Defensive strength is greater than offensive strength.

From Understanding War (1987):

[Prussian military theorist, Carl von] Clausewitz expressed this: “Defense is the stronger form of combat.” It is possible to demonstrate by the qualitative comparison of many battles that Clausewitz is right and that posture has a multiplicative effect on the combat power of a military force that takes advantage of terrain and fortifications, whether hasty and rudimentary, or intricate and carefully prepared. There are many well-known examples of the need of an attacker for a preponderance of strength in order to carry the day against a well-placed and fortified defender. One has only to recall Thermopylae, the Alamo, Fredericksburg, Petersburg, and El Alamein to realize the advantage enjoyed by a defender with smaller forces, well placed, and well protected. [p. 2]

The advantages of fighting on the defensive and the benefits of cover and concealment in certain types of terrain have long been basic tenets in military thinking. Dupuy, however, considered defensive combat posture and defensive value of terrain not just to be additive, but combat power multipliers, or circumstantial variables of combat that when skillfully applied and exploited, the effects of which could increase the overall fighting capability of a military force.

The statement [that the defensive is the stronger form of combat] implies a comparison of relative strength. It is essentially scalar and thus ultimately quantitative. Clausewitz did not attempt to define the scale of his comparison. However, by following his conceptual approach it is possible to establish quantities for this comparison. Depending upon the extent to which the defender has had the time and capability to prepare for defensive combat, and depending also upon such considerations as the nature of the terrain which he is able to utilize for defense, my research tells me that the comparative strength of defense to offense can range from a factor with a minimum value of about 1.3 to maximum value of more than 3.0. [p. 26]

The values Dupuy established for posture and terrain based on historical combat experience were as follows:

For example, Dupuy calculated that mounting even a hasty defense in rolling, gentle terrain with some vegetation could increase a force’s combat power by more than 50%. This is a powerful effect, achievable without the addition of any extra combat capability.

It should be noted that these values are both descriptive, in terms of defining Dupuy’s theoretical conception of the circumstantial variables of combat, as well as factors specifically calculated for use in his combat models. Some of these factors have found their way into models and simulations produced by others and some U.S. military doctrinal publications, usually without attribution and shorn of explanatory context. (A good exploration of the relationship between the values Dupuy established for the circumstantial variables of combat and his combat models, and the pitfalls of applying them out of context can be found here.)

While the impact of terrain on combat is certainly an integral part of current U.S. Army thinking at all levels, and is constantly factored into combat planning and assessment, its doctrine does not explicitly acknowledge the classic Clausewitzian notion of a power disparity between the offense and defense. Nor are the effects of posture or terrain thought of as combat multipliers.

However, the Army does implicitly recognize the advantage of the defensive through its stubbornly persistent adherence to the so-called 3-1 rule of combat. Its version of this (which the U.S. Marine Corps also uses) is described in doctrinal publications as “historical minimum planning ratios,” which proscribe that a 3-1 advantage in numerical force ratio is necessary for an attacker to defeat a defender in a prepared or fortified position. Overcoming a defender in a hasty defense posture requires a 2.5-1 force ratio advantage. The force ratio advantages the Army considers necessary for decisive operations are even higher. While the 3-1 rule is a deeply problematic construct, the fact that is the only quantitative planning factor included in current doctrine reveals a healthy respect for the inherent power of the defensive.

Dupuy’s Verities: Offensive Action

Sheridan’s final charge at Winchester by Thune de Thulstrup (ca. 1886) [Library of Congress]

The first of Trevor Dupuy’s Timeless Verities of Combat is:

Offensive action is essential to positive combat results.

As he explained in Understanding War (1987):

This is like saying, “A team can’t score in football unless it has the ball.” Although subsequent verities stress the strength, value, and importance of defense, this should not obscure the essentiality of offensive action to ultimate combat success. Even in instances where a defensive strategy might conceivably assure a favorable war outcome—as was the case of the British against Napoleon, and as the Confederacy attempted in the American Civil War—selective employment of offensive tactics and operations is required if the strategic defender is to have any chance of final victory. [pp. 1-2]

The offensive has long been a staple element of the principles of war. From the 1954 edition of the U.S. Army Field Manual FM 100-5, Field Service Regulations, Operations:

71. Offensive

Only offensive action achieves decisive results. Offensive action permits the commander to exploit the initiative and impose his will on the enemy. The defensive may be forced on the commander, but it should be deliberately adopted only as a temporary expedient while awaiting an opportunity for offensive action or for the purpose of economizing forces on a front where a decision is not sought. Even on the defensive the commander seeks every opportunity to seize the initiative and achieve decisive results by offensive action. [Original emphasis]

Interestingly enough, the offensive no longer retains its primary place in current Army doctrinal thought. The Army consigned its list of the principles of war to an appendix in the 2008 edition of FM 3-0 Operations and omitted them entirely from the 2017 revision. As the current edition of FM 3-0 Operations lays it out, the offensive is now placed on the same par as the defensive and stability operations:

Unified land operations are simultaneous offensive, defensive, and stability or defense support of civil authorities’ tasks to seize, retain, and exploit the initiative to shape the operational environment, prevent conflict, consolidate gains, and win our Nation’s wars as part of unified action (ADRP 3-0)…

At the heart of the Army’s operational concept is decisive action. Decisive action is the continuous, simultaneous combinations of offensive, defensive, and stability or defense support of civil authorities tasks (ADRP 3-0). During large-scale combat operations, commanders describe the combinations of offensive, defensive, and stability tasks in the concept of operations. As a single, unifying idea, decisive action provides direction for an entire operation. [p. I-16; original emphasis]

It is perhaps too easy to read too much into this change in emphasis. On the very next page, FM 3-0 describes offensive “tasks” thusly:

Offensive tasks are conducted to defeat and destroy enemy forces and seize terrain, resources, and population centers. Offensive tasks impose the commander’s will on the enemy. The offense is the most direct and sure means of seizing and exploiting the initiative to gain physical and cognitive advantages over an enemy. In the offense, the decisive operation is a sudden, shattering action that capitalizes on speed, surprise, and shock effect to achieve the operation’s purpose. If that operation does not destroy or defeat the enemy, operations continue until enemy forces disintegrate or retreat so they no longer pose a threat. Executing offensive tasks compels an enemy to react, creating or revealing additional weaknesses that an attacking force can exploit. [p. I-17]

The change in emphasis likely reflects recent U.S. military experience where decisive action has not yielded much in the way of decisive outcomes, as is mentioned in FM 3-0’s introduction. Joint force offensives in 2001 and 2003 “achieved rapid initial military success but no enduring political outcome, resulting in protracted counterinsurgency campaigns.” The Army now anticipates a future operating environment where joint forces can expect to “work together and with unified action partners to successfully prosecute operations short of conflict, prevail in large-scale combat operations, and consolidate gains to win enduring strategic outcomes” that are not necessarily predicated on offensive action alone. We may have to wait for the next edition of FM 3-0 to see if the Army has drawn valid conclusions from the recent past or not.

Was Kursk the Largest Tank Battle in History?

[This post was originally published on 3 April 2017.]

Displayed across the top of my book is the phrase “Largest Tank Battle in History.” Apparently some people dispute that.

What they put forth as the largest tank battle in history is the Battle of Brody in 23-30 June 1941. This battle occurred right at the start of the German invasion of the Soviet Union and consisted of two German corps attacking five Soviet corps in what is now Ukraine. This rather confused affair pitted between 750 to 1,000 German tanks against 3,500 to 5,000 Soviet tanks. Only 3,000 Soviet tanks made it to the battlefield according to Glantz (see video at 16:00). The German won with losses of around a 100 to 200 tanks. Sources vary on this, and I have not taken the time to sort this out (so many battles, so little time). So, total tanks involved are from 3,750 to up to 6,000, with the lower figure appearing to be more correct.

Now, is this really a larger tank battle than the Battle of Kursk? My book covers only the southern part of the German attack that started on 4 July and ended 17 July. This offensive involved five German corps (including three Panzer corps consisting of nine panzer and panzer grenadier divisions) and they faced seven Soviet Armies (including two tank armies and a total of ten tank and mechanized corps).

My tank counts for the southern attack staring 4 July 1943 was 1,707 German tanks (1,709 depending if you count the two Panthers that caught fire on the move up there). The Soviets at 4 July in the all formations that would eventually get involved has 2,775 tanks with 1,664 tanks in the Voronezh Front at the start of the battle. Our count of total committed tanks is slightly higher, 1,749 German and 2,978 Soviet. This includes tanks that were added during the two weeks of battle and mysterious adjustments to strength figures that we cannot otherwise explain. This is 4,482 or 4,727 tanks. So depending on which Battle of Brody figures being used, and whether all the Soviet tanks were indeed ready-for-action and committed to the battle, then the Battle of Brody might be larger than the attack in the southern part of the Kursk salient. On the other hand, it probably is not.

But, this was just one part of the Battle of Kursk. To the north was the German attack from the Orel salient that was about two-thirds the size of the attack in the south. It consisted of the Ninth Army with five corps and six German panzer divisions. This offensive fizzled at the Battle of Ponyiri on 12 July.

The third part to the Battle of Kursk began on 12 July the Western and Bryansk Fronts launched an offensive on the north side of the Orel salient. A Soviet Front is equivalent to an army group and this attack initially consisted of five armies and included four Soviet tank corps. This was a major attack that added additional forces as it developed and went on until 23 August.

The final part of the Battle of Kursk was the counter-offensive in the south by Voronezh, Southwestern and Steppe Fronts that started on 3 August, took Kharkov and continued until 23 August. The Soviet forces involved here were larger than the forces involved in the original defensive effort, with the Voronezh Front now consisting of eight armies, the Steppe Front consisting of three armies, and there being one army contributed by the Southwestern Front to this attack.

The losses in these battles were certainly more significant for the Germans than at the Battle of Brody. For example, in the southern offensive by our count the Germans lost 1,536 tanks destroyed, damaged or broken down. The Soviets lost 2,471 tanks destroyed, damaged or broken down. This compares to 100-200 German tanks lost at Brody and the Soviet tank losses are even more nebulous, but the figure of 2,648 has been thrown out there.

So, total tanks involved in the German offensive in the south were 4,482 or 4,727 and this was just one of four parts of the Battle of Kursk. Losses were higher than for Brody (and much higher for the Germans). Obviously, the Battle of Kursk was a larger tank battle than the Battle of Brody.

What some people are comparing the Battle of Brody to is the Battle of Prokhorovka. This was a one- to five-day event during the German offensive in the south that included the German SS Panzer Corps and in some people’s reckoning, all of the III Panzer Corps and the 11th Panzer Division from the XLVIII Panzer Corps. So, the Battle of Brody may well be a larger tank battle than the Battle of Prokhorovka, but it was not a larger tank battle than the Battle of Kursk. I guess it depends all in how you define the battles.

Some links on Battle of Brody:

https://en.wikipedia.org/wiki/Battle_of_Brody_(1941)

http://warisboring.com/the-biggest-tank-battle-in-history-wasnt-at-kursk/

https://www.youtube.com/watch?v=5qkmO7tm8AU